

Aula 00

Conhecimentos Específicos p/ SMS-BH (Técnico Superior de Saúde - Veterinário) - Pós-Edital

Autor:

Ana Paula Salim

17 de Janeiro de 2021

Sumário

1 - Epidemiologia	3
1.1 – História natural das doenças	4
1.2 — Cadeia epidemiológica	6
1.3 – Indicadores de saúde	15
1.4 – Características dos testes diagnósticos	21
1.5 – Formas de ocorrência das doenças	24
1.6 – Estudos epidemiológicos	27
Questões Comentadas	46
Referências	50

APRESENTAÇÃO DO CURSO

Olá, amigos do Estratégia Concursos, tudo bem?

É com muita satisfação que iniciaremos nossa aula de **Epidemiologia** em **teoria e questões** voltada para a **Secretaria Municipal de Saúde de Belo Horizonte - BH (Técnico Superior de Saúde - Veterinário)**.

Nosso curso será fundamentado em **teoria e questões**. Traremos **questões** de **todos os níveis**, inclusive questões cobradas em **concursos diversos** dentro da medicina veterinária, para nos prepararmos em relação às diferentes possibilidades de cobrança.

Além do material em PDF, também teremos videoaulas! Essas aulas destinam-se a complementar a preparação. Nas videoaulas focaremos em abordar os pontos principais das matérias.

É importante ressaltar que, ao contrário do PDF, AS VIDEOAULAS NÃO ATENDEM A TODOS OS PONTOS QUE VAMOS ANALISAR NOS PDFS, NOSSOS MANUAIS ELETRÔNICOS. Por vezes, haverá aulas com vários vídeos; outras que terão videoaulas apenas em parte do conteúdo; e outras, ainda, que não conterão vídeos. Nosso objetivo é, sempre, o estudo ativo!

Essas observações são importantes pois permitirão que possamos organizar o curso de maneira focada para as questões e temas mais cobrados em prova. Esta é a nossa proposta! E aí, estão prontos para começar?

Em caso de dúvidas ou sugestões fiquem à vontade para me contatar e adicionar nas redes sociais. Estamos juntos nessa caminhada e será um prazer orientá-los da melhor maneira possível! Vamos nessa!

Instagram: @prof.anapaulasalim

Telegram: t.me/profanapaulasalim

1 - EPIDEMIOLOGIA

Olá, alunos! Bem-vindos ao módulo de Epidemiologia.

Começaremos nosso estudo com os aspectos conceituais que envolvem a epidemiologia geral. A determinação desses conceitos, além de fundamental para o adequado andamento do nosso curso, é muito importante para a realização da sua prova!

Começaremos com uma definição básica do conceito de epidemiologia:

Epidemiologia é a ciência que estuda os eventos relacionados à saúde que ocorrem em uma população.

.....

Nesse contexto veremos a epidemiologia como uma série de <u>conceitos</u> e <u>metodologias</u> que viabilizem o <u>estudo</u> e o <u>conhecimento</u> do <u>processo saúde-doença</u> na saúde da população.

Assim, como podemos fazer uso da epidemiologia? A epidemiologia pode ser utilizada para:

- ✓ Diagnosticar problemas de saúde na comunidade;
- ✓ Projetar e avaliar tendências dos fenômenos;
- ✓ Identificar grupos de pessoas vulneráveis a determinada doença ou agravo;
- ✓ Avaliar serviços e técnicas.

Para isso, a epidemiologia se utiliza de métodos quantitativos para mensurar e avaliar a ocorrência de doenças nas populações humanas e, por conseguinte, define as estratégias de prevenção e controle.

Nesse sentido, quais seriam os principais objetivos da epidemiologia?

- ✓ Avaliar o comportamento e a frequência das doenças;
- ✓ Identificar os fatores envolvidos na ocorrência das doenças;
- ✓ Estabelecer ações preventivas e medidas de controle.

No estudo da epidemiologia, entende-se que a ocorrência das enfermidades ou agravos à saúde não possuem uma única causa. Há uma interação entre os fatores: agente etiológico x hospedeiro x ambiente e, qualquer desequilíbrio em um deles, pode favorecer o surgimento de doenças ou agravos da saúde.

Para começarmos a entender os elementos envolvidos no processo de saúde-doença, iniciaremos o estudo sobre a história natural das doenças.

1.1 – História natural das doenças

Todo ser vivo, animal ou vegetal, vive em meio a diversos fatores que afetam a sua saúde. Sabemos que a saúde de um indivíduo depende do equilíbrio de fatores biológicos (do hospedeiro, do agente etiológico e do ambiente), psicológicos e sociais.

Nesse sentido, conforme comentamos anteriormente, qualquer alteração em um desses fatores, pode ocasionar o processo de doença. Assim, a compreensão desses processos requer não só a contabilização do número de casos, mas também o entendimento da sua evolução, desde o início, até o processo de resolução ou morte.

Nesse sentido, a história natural da doença representa a doença em seu curso natural, sem nenhuma intervenção e compreende, basicamente, os períodos: pré-patogênico ou epidemiológico e o período patogênico ou patológico (Figura 1).

História natural da doença: refere-se à evolução de uma doença no indivíduo através do tempo, na ausência de intervenção.

a) Período pré-patogênico ou epidemiológico: período que precede a infecção e as possíveis manifestações clínicas pelo contato entre o agente e o hospedeiro. Representa o momento da interação do agente com ambiente e com o hospedeiro.

E quais atividades são realizadas no pré-patogênico ou epidemiológico?

As atividades de **prevenção primárias** são efetuadas nesse período a fim de promover a saúde e a proteção específica.

b) Período patogênico ou patológico: caracterizado pela resposta orgânica do hospedeiro frente ao agente. Mostra as mudanças que se apresentam no hospedeiro uma vez que é realizado um estímulo efetivo, ou seja, as modificações que se passam no organismo do hospedeiro frente a ação do agente etiológico.

No **período patogênico ou patológico** determina-se o horizonte clínico, com a manifestação dos sinais e sintomas. Ainda neste período, são estabelecidas as atividades de **prevenção secundária**, como o diagnóstico precoce, o tratamento imediato e a limitação do dano.

No **período patogênico ou patológico também** é realizada a **prevenção terciária** como, por exemplo, a reabilitação.

Por fim, o curso da doença termina com a recuperação do indivíduo (cura), com o estabelecimento dos efeitos crônicos (invalidez), ou com a morte.

Figura 1. Representação da história natural das doenças.

ANTES DA DOENÇA	CURSO DA DOENÇA NO HOMEM	
Interação do <i>Agente x Hospedeiro x Ambiente</i>	Período de latência → sinais e sintomas → defeito ou dano → óbito ou estado crônico	
Estímulo →	Interação – Estímulo → Hospedeiro → Reação do Hospedeiro	
PERÍODO PRÉ - PATOGÊNICO	PERÍODO PATOGÊNICO	
Prevenção Primária	Prevenção Secundária Terciária	
NÍVEIS DE PREVENÇÃO		

Fonte: Adaptado de Brasil (2010).

A história natural das doenças já foi caracterizada para diversas enfermidades, tanto transmissíveis quanto não-transmissíveis, assim como doenças agudas e crônicas. Nesse sentido, em relação às características das doenças, alguns conceitos são muito importantes. Vejam só!

Período de incubação: é o intervalo de tempo que transcorre entre a exposição a um agente infeccioso e o surgimento do primeiro sinal ou sintoma da doença (Brasil, 2010).

Período de latência: é o intervalo de tempo que transcorre desde a produção da infecção até que a pessoa se torne infecciosa (Brasil, 2010).

Período de transmissibilidade ou infeccioso: é o intervalo de tempo durante o qual o agente infeccioso pode ser transferido direta ou indiretamente de uma pessoa infectada a outra pessoa, de um animal infectado ao ser humano ou, ainda, de um ser humano infectado a um animal, inclusive artrópodes (Brasil, 2010).

Período prodrômico: lapso de tempo entre os primeiros sintomas da doença e o início dos sinais ou sintomas, com os quais pode se estabelecer o diagnóstico. Ocorre após o período de incubação, mas que antecede a patologia. Apresenta, muitas vezes, sinais e sintomas inespecíficos.

Em outras palavras, **período prodrômico** é o período no qual surgem as primeiras manifestações da doença, até o aparecimento dos sinais e sintomas característicos, de maneira clara e definida, possibilitando o estabelecimento do diagnóstico.

Período de convalescença: período de recuperação após uma doença, mas que antecede o completo reestabelecimento da saúde.

Compreendidos esses conceitos iniciais, prosseguiremos com nosso estudo conhecendo sobre a cadeia epidemiológica.

1.2 – Cadeia epidemiológica

O processo de desenvolvimento das doenças não ocorre de maneira isolada e, sim, por meio de sua interação com o ecossistema.

Esse ecossistema compreende três grandes elementos, já vistos por nós no estudo da história natural das doenças, que são: o **agente etiológico**, o **hospedeiro** e o **ambiente** (Figura 2).

Figura 2. Tríade epidemiológica.

A junção desses elementos forma o que chamamos de **tríade epidemiológica**. Esses elementos podem coexistir em harmonia, ou desencadear eventos desfavoráveis, que resultam no desenvolvimento das doenças.

Portanto, devemos ter em mente que o desequilíbrio em qualquer um dos fatores da tríade epidemiológica contribui para o processo de adaptação dos demais e essa adaptação pode estar relacionada com o desenvolvimento das doenças.

E aí pessoal, vocês compreenderam o raciocínio até aqui?

Compreender o desencadeamento das doenças e como funciona o estudo da epidemiologia é fundamental para darmos os próximos passos em relação ao nosso conteúdo. Estudaremos agora sobre a cadeia epidemiológica, também conhecida como cadeia de infecção.

O fluxograma abaixo mostra os principais **elementos** envolvidos na **relação** entre o **agente etiológico**, **hospedeiro** e o **meio**, que são: agente causal, reservatório ou fonte de infecção, porta de entrada no hospedeiro, porta de saída do agente, modo de transmissão e suscetibilidade do hospedeiro (Figura 3).

Estudaremos a definição e a importância de cada um desses elementos a seguir.



Figura 3. Representação da cadeia epidemiológica.

Fonte: Adaptado de Brasil (2010).

O que vocês entendem como agente causal, pessoal? Agente causal é tudo aquilo que causa alguma coisa, certo? No nosso caso, que provoca a doença. Portanto, o conceito de agente causal envolve todo fator cuja presença contribui para a ocorrência de uma doença. Compreendido?

Atenção! A presença do agente causal é necessária para estabelecer a relação de doença, porém, não é o único fator determinante para a ocorrência da doença, visto que este não é o único fator envolvido em seu estabelecimento.

Vimos que agente causal é todo fator que contribui para a ocorrência da doença. Mas o que seria um agente, pessoal? Agente é todo e qualquer agente biológico, físico ou químico, cuja presença é essencial para a ocorrência da doença.

Os agentes podem ser divididos em:

- **Biológicos:** são organismos vivos capazes de causar infecção ou doença nos seres humanos e nos animais.
- **Não biológicos:** são agentes físicos (força, calor, luz) e químicos (pesticidas, aditivos), capazes de provocar enfermidades.

São exemplos desses agentes:

BIOLÓGICOS:

Artrópodes: Sarcoptes scabiei

Protozoários: Entamoeba hystolitica

Fungos: Histoplasma capsulatum, C. neoformans

Micoplasmas: Mycoplasma pneumoniae

Clamídias: Chlamydia psittaci

Bactérias: Staphylococcus aureus

Vírus: Hepatite A

Príons: EEB – Encefalopatia espongiforme bovina

NÃO BIOLÓGICOS:

Químicos:

Pesticidas

Aditivos de

alimentos

Fármacos

Industriais

Físicos:

Força mecânica

Calor

Luz

Radiações

Ruído

• Propriedades dos agentes biológicos

Os agentes biológicos apresentam determinadas propriedades que dizem respeito aos seus mecanismos de contato, invasão, perpetuação no hospedeiro e desencadeamento da doença.

O conhecimento dessas propriedades é de grande importância tanto epidemiológica, pois permitem a classificação e a identificação desses agentes, como para sua prova, visto ser um tema muito recorrente nas questões de concurso.

Vejamos, a seguir, quais são essas propriedades.

Mas, antes de prosseguirmos, vamos estudar um conceito muito importante para nosso entendimento. O conceito de hospedeiro.

Hospedeiro: qualquer pessoa ou animal vivo (incluindo os artrópodes) que permite o alojamento e de um agente infeccioso. Os hospedeiros apresentam graus variados de susceptibilidade à ação dos agentes etiológicos, de acordo com suas características próprias, ou variáveis.

Hospedeiro: todo ser vivo capaz de albergar em seu organismo um agente etiológico causador de doenças.

E o que são características essas características próprias do hospedeiro? **Características próprias** são aquelas que **não sofrem influência** do **agente etiológico** nem do ambiente. São elas, por exemplo:

- Espécie;
- Raça;
- Sexo;
- Idade.

Além das características próprias, os hospedeiros também apresentam características variáveis, que são aquelas que podem ser alteradas por ação do agente etiológico ou do ambiente. São elas, por exemplo:

- Estado fisiológico do hospedeiro;
- Utilização do ambiente;
- Densidade populacional.

Outro conceito importante para o nosso estudo é o de ambiente. **Ambiente**, pessoal, é todo o meio no qual permanecem e habitam os hospedeiros e agentes etiológicos.

As variações no ambiente podem ocasionar condições favoráveis à ação dos agentes etiológicos em uma população com maior susceptibilidade. As características do ambiente podem ser divididas em: físicas, biológicas e socioeconômicas.

São exemplos de características físicas do ambiente:

- Clima:
- Condições hidrográficas;
- Solo:
- Topografia.

São exemplos de características biológicas do ambiente:

• Fauna e flora.

São exemplos de características socioeconômicas:

- Tipo de produção;
- Criação e manejo de animais;
- Higiene ambiental;

Consciência da população.

E aí, pessoal, conseguiram compreender as características do ambiente? Prosseguiremos nosso estudo com a definição de mais alguns conceitos importantes e que estão relacionados com as propriedades dos agentes etiológicos.

Infecção: é a entrada, desenvolvimento e multiplicação de um agente no hospedeiro.

Antigenicidade: característica de o agente em **induzir imunidade específica no hospedeiro**, que resulta na formação de anticorpos e imunidade de células. Também chamada de **imunogenicidade**.

Infectividade ou infecciosidade: é a capacidade de o agente de penetrar, se alojar e multiplicar em um hospedeiro, causando infecção, independente da manifestação clínica da doença.

Patogenicidade: é a capacidade de o agente de **produzir doença** em pessoas infectadas. A patogenicidade relaciona-se com a capacidade em produzir a manifestação clínica da doença (sintomatologia, lesões características), e é representada pela seguinte equação:

Patogenicidade = casos de doença aparente ÷ total de infectados

Atenção, pessoal! A **patogenicidade**, ou seja, a capacidade que o agente tem de infectar e produzir doenças nos seres humanos depende da **suscetibilidade do hospedeiro**.

Nem todas as pessoas expostas de maneira semelhante a um agente são infectadas.

Da mesma maneira, entre os indivíduos infectados, alguns podem não apresentar sinais e sintomas no curso da infecção, caracterizando uma **infecção inaparente** ou **subclínica** ou, ainda, apresentarem os sintomas de duração e graus variáveis, caracterizando uma **infecção aparente** ou **clínica**.

Infecção inaparente: é a presença de um agente em um hospedeiro sem que apareçam sinais ou sintomas clínicos manifestos.

Só podem ser identificados por métodos laboratoriais ou pela manifestação de reatividade positiva nos testes cutâneos específicos

Sinônimos: infecção subclínica, assintomática ou oculta (BRASIL, 2010).

Vale ressaltar que a **intensidade e a importância** de uma **infecção aparente** são medidas a partir de sua <u>morbidade</u> e <u>letalidade</u>.

Virulência: é a capacidade do agente infeccioso em produzir **casos graves e fatais**. É calculada pelo número de casos graves e fatais em proporção ao número total de casos aparentes.

A virulência relaciona-se com a severidade das reações que o agente provoca no hospedeiro.

Virulência = casos graves e fatais ÷ total de casos aparentes

Letalidade: é a capacidade do agente infeccioso em produzir casos fatais. É calculada pelo número de casos fatais em proporção ao número total de casos aparentes no mesmo período.

Letalidade = casos fatais ÷ total de casos aparentes

Variabilidade: capacidade do agente em se adaptar às condições adversas.

Viabilidade ou resistência: capacidade de sobreviver fora do hospedeiro, ou seja, no ambiente.

Persistência: relaciona-se com a capacidade do agente em permanecer em uma população de hospedeiros por tempo prolongado.

E aí, pessoal, compreendidos esses conceitos? Estudaremos, agora, algumas características dos reservatórios.

• Características dos reservatórios

Os agentes causadores de doenças habitam, se desenvolvem e mantêm seu alojamento em nichos naturais específicos, os quais são denominados **reservatórios**.

Reservatório de agentes infecciosos: "é qualquer ser humano, animal, artrópode, planta, solo ou matéria inanimada, onde normalmente vive e se multiplica um agente infeccioso e do qual depende para sua sobrevivência, reproduzindo-se de forma que possa ser transmitido a um hospedeiro suscetível" (BRASIL, 2010).

Em relação aos reservatórios, dois outros conceitos são muito importantes para o nosso estudo, que são os conceitos de fonte de infecção e de portador. Vamos estudá-los?

Fonte de infecção: "é a pessoa, animal, objeto ou substância de onde o agente infeccioso passa a um hospedeiro" (BRASIL, 2010).

Portador: é um indivíduo, humano ou animal, que abriga um agente etiológico específico de uma doença, **sem apresentar sinais ou sintomas clínicos** sendo, portanto, uma fonte potencial de infecção.

O estado de portador pode ocorrer em um indivíduo das seguintes formas:

- I. Portador assintomático ou sadio;
- II. Portador sub-clínico: durante o curso de uma infecção subclínica;
- III. Portador em incubação: durante o período de incubação;

- IV. Portador convalescente: durante a fase de convalescência;
- V. Pós-convalescência, das infecções que se manifestam clinicamente.

Em todos os casos, o estado de portador pode ocorrer de forma breve, caracterizando o **portador transitório ou temporal**, ou prolongado, caracterizando o **portador crônico**.

Formas de transmissão do agente

Estudamos no tópico anterior os tipos de agentes causadores de enfermidades (biológicos, químicos e físicos), e suas características (como infecciosidade, patogenicidade e virulência), que influenciam diretamente no processo saúde e doença.

Ainda em relação ao processo saúde-doença, outro importante tema a ser estudado é o modo de transmissão dos agentes.

Como **modo de transmissão**, entende-se a forma com o que o agente etiológico é transportado do reservatório para o hospedeiro.

Os principais mecanismos de transmissão do agente etiológico são:

Transmissão direta: é a transferência direta do agente etiológico, por meio de uma porta de entrada, para que ocorra a infecção.

Exemplos: dispersão de gotículas (perdigotos) nas conjuntivas ou nas membranas mucosas ao espirrar, tossir, etc.

A transmissão direta também pode ser chamada de transmissão de pessoa a pessoa.

Transmissão indireta: é a transferência indireta do agente etiológico, por meio de fômites e vetores, para que ocorra a infecção.

Transmissão indireta por meio de fômites: ocorre através de objetos ou materiais contaminados que atuam como veículo para a transmissão do agente, como água, alimentos, leite, seringas, entre outros.

O agente etiológico pode ou não ter se multiplicado no fômite antes de ser transmitido.

Transmissão indireta por meio de um vetor: ocorre por meio de um inseto artrópode ou qualquer portador vivo que transporte o agente etiológico até um indivíduo susceptível. Nesse caso, <u>o agente pode ou não se multiplicar dentro do vetor</u>.

Transmissão indireta por meio mecânico: é o transporte mecânico do agente etiológico por meio de um inseto, <u>sem a multiplicação</u> ou <u>desenvolvimento cíclico do micro-organismo</u>.

Transmissão indireta por meio biológico: o agente etiológico <u>obrigatoriamente se desenvolve</u> (multiplica) no artrópode-vetor antes que possa transmitir a forma infectante ao ser humano.

Nesse caso, o vetor torna-se infectante apenas após a passagem do agente por um período de incubação, depois da infecção.

Nesse sentido, a transmissão do agente etiológico pode ocorrer:

- I. através da saliva do vetor durante a picada;
- II. por regurgitação do vetor;
- III. com o depósito das fezes do vetor, contendo os agentes infecciosos, sobre a pele do hospedeiro.

Transmissão indireta através do ar: é a disseminação de aerossóis que entram no hospedeiro através de uma porta de entrada, como por exemplo, a do trato respiratório.

A transmissão pelo ar ocorre por meio de resíduos de evaporação de gotículas ou perdigotos emitidos por um hospedeiro infectado. Podem ser, ainda, resultado de vapores de laboratórios microbiológicos, salas de abate, entre outros que se mantêm em suspensão no ambiente.

Essas partículas podem permanecer em suspensão no ar por longos períodos com manutenção, ou não, de sua infectividade e ou virulência.

Transmissão indireta através do solo: resultam de pequenas partículas procedentes do solo, esporos de fungos, roupas, objetos e ambientes contaminados.

Compreendidas as formas de transmissão do agente etiológico veremos, agora, as formas de eliminação desse agente ou formas de saída.

• Portas de eliminação ou de saída do agente

As portas de saída tratam-se do local pelo qual o agente etiológico sai do hospedeiro.

As principais portas de saída do hospedeiro são:

Respiratórias: os agentes etiológicos que utilizam as vias respiratórias como porta de saída, são causadores das doenças com maior difusão e dificuldade de controle, como tuberculose, influenza, sarampo, etc.

Genitourinárias: utilizam essa via de saída os agentes etiológicos causadores da leptospirose, sífilis, AIDS, entre outras doenças sexualmente transmissíveis.

Digestivas: utilizam essa via de saída os agentes etiológicos causadores da febre tifóide, cólera, etc.

Pele: a pele pode representar uma porta de saída dos agentes etiológicos, por meio do contato direto com lesões, por exemplo, as lesões de herpes e sífilis; por meio de picadas, mordidas, perfuração por objetos cortantes, ou contato com utensílio contendo contato com sangue infectado.

Pode ocorrer na transmissão da doença de Chagas, malária, leishmaniose, etc.

Placentária: a placenta representa uma barreira de proteção do feto contra infecções da mãe, contudo, muitas vezes, esta não efetua um bloqueio total para alguns agentes etiológicos, como os causadores de sífilis, toxoplasmose, AIDS, entre outras.

Pessoal, também não podemos deixar de comentar sobre as portas de entrada dos agentes no hospedeiro, não é mesmo?

As portas de entrada são os locais pelos quais o agente etiológico pode entrar no hospedeiro.

As portas de entrada, em geral, **são as mesmas utilizadas para a saída do hospedeiro**. Como exemplo temos as vias respiratórias que atuam tanto como porta de saída, como porta de entrada do agente entre os hospedeiros.

Por outro lado, também observamos enfermidades nas quais as vias de entrada e de saída são distintas como, por exemplo, as intoxicações alimentares por estafilococos.

Nesse caso o agente é eliminado por meio do contato com uma lesão na pele ou por meio das vias aéreas (em casos de portadores assintomáticos) e entra no novo hospedeiro por via oral, através da ingestão de alimentos contaminados com o patógeno.

1.3 – Indicadores de saúde

Os indicadores de saúde são valores numéricos utilizados como base para avaliar o estado de saúde de uma população.

Contudo, sabemos que somente os valores numéricos dos indicadores não são suficientes para determinar, por exemplo, o risco da população em relação às enfermidades, sua distribuição, e fatores de risco.

Essas informações não-numéricas são obtidas por meio de outros indicadores, os quais destacam-se os indicadores de **morbidade** e **mortalidade** que podem ser expressos como <u>coeficiente</u>, também denominados de <u>taxa</u>, ou <u>índice</u>.

E qual é a diferença entre eles?

De uma forma geral, **coeficiente** ou **taxa** é a relação entre o número de eventos reais e os que poderiam acontecer, sendo a única medida que informa quanto ao "risco" de ocorrência de um evento (Brasil, 2003).

Em outras palavras, os coeficientes ou taxas **medem o risco** que um **indivíduo** de determinada população **tem de sofrer aquele evento**, ou seja, trata-se de uma **probabilidade**.

Já o **índice** é a **relação entre frequências** atribuídas de determinado evento, na qual a frequência absoluta do evento é registrada, no numerador, que constitui um subconjunto da frequência contida no denominador (Brasil, 2003).

Em outras palavras, o índice relaciona duas quantidades ou dois eventos distintos.

E aí, pessoal, compreendida a diferença entre taxa e índice? Prosseguiremos para o estudo das medidas de mortalidade e morbidade. Muita atenção agora, pois essas medidas são muito cobradas em prova!

1. Medidas de mortalidade

Antes de começarmos a estudar as medidas de mortalidade, estudaremos sua definição!

Mortalidade é uma variável característica das comunidades de seres vivos e refere-se ao conjunto de indivíduos, dentro de uma população, que morreram em um dado intervalo do tempo.

A mortalidade representa o risco ou probabilidade que qualquer pessoa na população tem de vir a morrer em decorrência de uma determinada doença.

A mortalidade é calculada pelas taxas ou coeficientes de mortalidade como o coeficiente de mortalidade geral, mortalidade por causa e a letalidade.

a) Coeficiente ou taxa de mortalidade: é um índice demográfico calculado a partir do o número de óbitos de indivíduos em uma população em determinado período de tempo.

Taxa de mortalidade = Número de óbitos de indivíduos de uma população ÷ total de indivíduos da população.

Em geral, a taxa de mortalidade é apresentada como o número de óbitos a cada 1000 habitantes.

b) Coeficiente de mortalidade geral (CMG): o coeficiente de mortalidade geral mede a quantidade de mortes ocorridas em uma população em um período determinado.

É calculado pela fórmula:

CMG = M ÷ P x 10^k

Na qual:

M: significa o total de óbitos de uma área em determinado ano;

P: significa a população (nº de habitantes) dessa área;

K: é uma variável.

O CMG é utilizado para comparar a mortalidade entre áreas diferentes ou momentos diferentes de uma mesma área.

Nesse sentido, uma área que apresente maior CMG do que outra, apresenta piores níveis de saúde. Uma vez que, em se tratando de uma população de igual tamanho, a população com maior CMG apresenta maior número de óbitos.

Atenção! O coeficiente de mortalidade geral **não** descreve:

- I. A causa do óbito
- II. A faixa etária da população envolvida.

Contudo, o coeficiente de mortalidade geral pode relacionar:

- I. *A frequência absoluta de óbitos* pois permite calcular o número de óbitos de determinada população.
- II. A frequência relativa entre óbitos por habitante pois permite comparar a ocorrência de óbitos em populações diferentes ou na mesma população em tempos diferentes.

Vale lembrar!

Valor absoluto: é resultado de uma frequência e está relacionado com o número de vezes que um evento de interesse é repetido (exemplo: número de casos de brucelose em um ano).

Valor relativo: é um valor que, além disso, relaciona-se a outro valor de interesse. Os valores relativos podem ser calculados na forma de razões, proporções e taxas.

c) Mortalidade por causa: determina o número de mortes na população por uma causa específica.

Mortalidade por causa = Número de mortes por uma causa específica em determinada área e período de tempo especificado ÷ População estimada da área geográfica na metade do período x variável (k).

- d) Coeficiente de letalidade ou fatalidade: mede o risco que um indivíduo doente tem de vir à óbito em consequência da enfermidade.
 - I. Indica a gravidade da doença, ou seja, a virulência do agente etiológico.
 - II. Indica a qualidade dos serviços de saúde. Ou seja, se mais indivíduos morrem por conta doença, o coeficiente pode indicar precariedade nos serviços de atenção básica em saúde.

Letalidade = Número de mortes por uma determinada doença em um período de tempo especificado ÷ Número de indivíduos doentes no mesmo período x base (10ⁿ).

2. Medidas de morbidade

Estudadas as medidas de mortalidade, veremos agora as medidas de morbidade. Mas, antes, qual é a definição de morbidade? Vamos conferir?

Morbidade é uma variável característica das comunidades de seres vivos e refere-se ao conjunto de indivíduos, dentro da mesma população, que adquirem doenças (ou uma doença específica) em um dado intervalo de tempo. A morbidade serve para mostrar o comportamento das doenças e dos agravos à saúde na população.

A palavra morbidade vem do latim *morbus*, que significa tanto doença física como doença do espírito, paixão.

Conceito simples, não é mesmo?! Mas, acreditem, já caiu em prova! Tomem nota!

Retornando ao nosso estudo, as medidas de morbidade estabelecem o número de casos da doença em uma população. São expressos como coeficiente de incidência, prevalência e de ataque.

a) Incidência: relaciona-se com o número de casos novos de uma doença em uma população exposta ao risco de adoecer, em determinado período de tempo.

A incidência pode ser expressa:

- I. Como número absoluto de casos novos: que são obtidos por contagem, em determinado tempo e com população definida.
- II. Como um coeficiente: que indica a proporção de casos novos de uma doença, em uma população que esteve exposta ao risco de adoecer em determinado período.

Coeficiente de incidência = Número de casos novos da doença em uma população, durante o período de tempo especificado \div População em risco de desenvolver a doença durante o período especificado x base (10^n).

A base da equação depende da frequência de casos, podendo ser 100, 1 mil, 10 mil ou 100 mil, etc.

Sobre a **incidência** é importante saber:

- I. A incidência é uma **medida de eventos**, ou seja, de doenças se desenvolvem em pessoas anteriormente sadias. Em outras palavras, avalia a frequência de surgimento dos **casos novos** da doença na população.
- II. Trata de casos novos e, no numerador, não podem ser incluídos casos que já estavam sob acompanhamento anteriormente.

- III. Só são consideradas como população exposta as pessoas que estiveram sob real risco de adoecer no momento em questão.
- IV. Avalia o risco de um indivíduo de determinada população ser acometido pela enfermidade em questão, no tempo determinado.
- V. O período de tempo é variável, mas deve ser claramente definido para a realização do cálculo de incidência, e todos os indivíduos incluídos devem ter sido expostos durante todo o período.
 - VI. A incidência também pode ser chamada de morbidade incidente.
- VII. Entende-se como incidência cumulativa ou incidência acumulada a probabilidade ou o risco de um indivíduo da população desenvolver a doença durante um período específico. É a maneira mais simples de medir a ocorrência de uma doença.

Atenção! Diferentemente do coeficiente de incidência, o <u>denominador</u> na taxa de **incidência cumulativa** é a <u>população em risco</u> no <u>início do estudo</u>.

Incidência cumulativa = Número de pessoas que desenvolveram a doença no período ÷ Número de pessoas sem a doença no início do período x base (10ⁿ).

b) Prevalência: mede o número de casos existentes de uma doença em uma população, em determinado local e momento.

Coeficiente de prevalência = Número de casos existentes da doença em uma população durante um período especificado ÷ Número de pessoas dessa população durante o mesmo período x base (10ⁿ).

Sobre a **prevalência** é importante saber:

- I. A prevalência retrata a população com relação a uma determinada doença ou agravo.
- II. É a soma de casos novos e antigos, que permanecem na população no período especificado.
- III. Se houver variação no período/ tempo de estudo poderá haver diferença na prevalência, por conta do surgimento de casos novos ou a redução dos casos da população, por migração, cura ou morte.

Pessoal, atenção às diferenças entre os conceitos de prevalência e incidência!

A **prevalência** informa sobre a **situação da doença** em determinado período, mas não estima o risco de adoecer, porque os casos novos e os já existentes na população são contabilizados de forma conjunta.

A incidência traz informações sobre a dinâmica de entrada de casos novos e permite uma estimativa do risco de adoecer da população exposta.

c) Coeficiente ou taxa de ataque: mede o número de casos novos da doença. Semelhante ao coeficiente de incidência, porém, é <u>utilizado para doenças transmissíveis</u>, nas quais é possível determinar os indivíduos expostos ao agente etiológico.

Coeficiente de ataque = Número de casos novos da doença em uma população durante um período especificado ÷ Número de indivíduos expostos ao agente etiológico x base (10ⁿ).

Entendido isso, prosseguiremos com mais um tema muito importantes para as provas de concurso, que são as características dos testes diagnósticos.

1.4 – Características dos testes diagnósticos

Pessoal, estudaremos, agora, sobre as características dos testes diagnósticos, que envolvem: sensibilidade, especificidade e acurácia. Vocês já devem ter ouvido falar sobre essas características, não é mesmo?

Em qualquer estudo a determinação da presença ou ausência de uma variável de interesse é feita com o uso de **indicadores** que são **instrumentos de medida**, a partir dos quais é possível quantificar uma informação "empírica".

Indicador é instrumento ou meio que permite transpor a informação do nível sensível, empírico para o nível lógico.

.....

Os indicadores quais podem ser representados pela observação de determinadas características de um indivíduo ou através de **instrumentos diagnósticos**. Dessa maneira, esses instrumentos diagnósticos devem apresentar algumas características essenciais ao seu funcionamento e que são próprias de cada instrumento.

Essas características, conforme estudaremos adiante, podem influenciar diretamente na interpretação dos resultados.

Inicialmente, a avaliação de um teste diagnóstico é feita a partir da mensuração da **validade** e da **precisão** dos instrumentos de medida.

E o que é validade?

Validade é a capacidade do teste de separar os doentes dos sadios, e é medida através da: sensibilidade e especificidade.

E quais os conceitos de sensibilidade e especificidade? Vocês sabem?

Sensibilidade: é probabilidade de um teste resultar positivo em indivíduos que apresentem a doença.

Sensibilidade = a ÷ a + c

Exemplo: Em 100 ratos infectados, o teste apresentou resultado positivo em 95 animais. Isto significa que sensibilidade deste teste é de 95%, ou seja, um teste com esta característica, resulta na produção de 5% de falso-negativos.

Especificidade: é probabilidade de um **teste** resultar **negativo** em **indivíduos** que não apresentem a doença (**sadios**).

Especificidade = d ÷ b + d

Exemplo: Em 100 ratos não infectados, o teste apresentou resultado negativo em 90 animais. Isto significa que a especificidade deste teste é 90%, ou seja, um teste com esta característica, resulta na produção de 10% de falso-positivos.

Portanto, a **sensibilidade** indica a positividade do teste na presença da doença, enquanto a **especificidade** indica a negatividade do teste na ausência da doença.

A sensibilidade e a especificidade têm uma **relação inversa entre si**, na qual uma tende a reduzir na medida em que há o aumento da outra.

Comentamos, anteriormente, que a avaliação de um diagnóstico é feita a partir da mensuração de da validade e da precisão dos instrumentos de medida. Estão lembrados?

E o que é precisão?

Precisão ou reprodutibilidade: capacidade que o teste tem de apresentar resultados consistentes consigo mesmo, sem variação quando aplicados nas mesmas pessoas em diferentes momentos.

Dessa forma, uma pessoa que apresente teste positivo para determinada doença ou infecção, que permaneça ativa por um determinado período, deverá apresentar sucessivos resultados positivos ao mesmo teste, enquanto permanecerem as condições de doença ou infecção.

De modo semelhante, os indivíduos sem a doença ou infecção deverão apresentar testes negativos enquanto se mantiverem saudáveis.

Além da validade e da precisão, outra característica importante dos testes diagnósticos é **acuidade** ou **acurácia**. A acurácia **mede a capacidade** de **fornecer resultados corretos**, sejam estes resultados positivos ou negativos.

Acuidade ou acurária: é a soma dos verdadeiros positivos e dos verdadeiros negativos, no total dos exames realizados.

```
Acurácia = a+ d ÷ n
```

Tanto a sensibilidade, quanto a especificidade e a acuidade podem ser utilizadas para medir a validade de um teste diagnóstico.

Em relação aos testes diagnósticos, duas outras medidas também são muito importantes para o nosso estudo. São os valores preditivo positivo e os valaores preditivos negativos.

Valor preditivo positivo (VPP): é a probabilidade de o paciente ter a doença dado que o teste resulte positivo.

```
Valor preditivo positivo = a ÷ a + b
```

Valor preditivo negativo (VPN): é a probabilidade de o paciente não ter a doença dado que o teste resulte negativo.

```
Valor preditivo negativo = d ÷ c + d
```


E qual é a diferença entre a sensibilidade e a especificidade e os valores preditivos positivo e negativo? Vocês sabem?

Ao passo que a **sensibilidade** e a **especificidade** são <u>valores fixos</u> e característicos do teste, os **VPP** e o **VPN** <u>variam de acordo com a prevalência</u> da doença na população da qual se originou o indivíduo que realizou o teste.

Nesse sentido, o VPP se apresenta diretamente **proporcional** à **prevalência**, enquanto o VPN varia de modo **inversamente proporcional** a prevalência. Sintetizando, o aumento da prevalência aumenta o VPP e reduz o VPN.

Por fim, **elevadas prevalências** tornam <u>mais confiável a interpretação da presença da doença</u> em uma pessoa com o teste positivo e menos confiável a interpretação da ausência da doença em uma pessoa com o teste negativo.

Compreendido, pessoal?

Outro tópico importante para nosso estudo, é a avaliação das formas de ocorrência das doenças em uma população. Vamos nessa?

1.5 – Formas de ocorrência das doenças

Vimos, anteriormente, que o estudo do comportamento das doenças e os fatores que influenciam a sua ocorrência é um dos alicerces básicos da epidemiologia. Veremos, agora, de que forma essas doenças podem ocorrer.

As doenças podem ocorrer em uma população de quatro formas:

- Endêmica;
- Epidêmica;
- Pandêmica;
- Esporádica.

E o que significa cada uma delas?

a) Forma endêmica ou endemia: trata-se da ocorrência uma doença em uma população dentro dos limites esperados.

Ou seja, a doença ocorre de maneira <u>constante e frequente</u>, entendendo-se uma <u>situação estável</u> por um longo período de tempo. Na endemia, incidência da doença em questão se mantém relativamente constante.

A enzootia está relacionada com a presença constante, ou prevalência usual da doença ou agente infeccioso, na população animal de dada área geográfica. A enzootia é semelhante à endemia, porém, é relacionada com populações animais.

b) Forma epidêmica ou **epidemia**: trata-se de um **aumento súbito** e **imprevisível** dos casos de uma doença na população.

Portanto, entende-se como epidemia, a ocorrência das enfermidades em um <u>patamar superior</u> aos <u>limites esperados</u> em determinado momento, podendo gerar um surto epidêmico.

A **epizootia** trata da ocorrência de casos de uma doença em excesso, em relação à incidência normal, em uma população animal, de determinada área geográfica. O conceito de epizootia se assemelha ao de epidemia, porém, em populações animais.

Atenção! Epidemia não envolve, necessariamente, um grande número de casos da doença.

Classicamente, a **epidemia** é definida como a alteração do estado de saúde-doença de uma população, caracterizada por uma **elevação inesperada** dos **coeficientes de incidência** de determinada doença, ultrapassando o limite epidêmico estabelecido para aquela doença.

Além disso, as epidemias podem ser denominadas como:

Epidemia por fonte comum: ocorre o surgimento de diversos casos clínicos, dentro de um período semelhante de incubação clínica da doença, sugerindo a exposição simultânea de muitas pessoas ao agente etiológico. Ocorre, por exemplo, nas epidemias de origem hídrica.

Sinônimos: epidemia maciça ou epidemia por veículo comum.

Epidemia progressiva: ocorre quando os casos identificados são atribuídos a agentes de diversas fontes, pois as infecções são transmitidas de pessoa a pessoa ou de animal a animal.

Sinônimos: epidemia por fonte propagada.

c) Pandemia: se trata da ocorrência de uma doença acima dos valores esperados e que atinge grandes extensões geográficas, podendo atingir mais de um país ou continente.

A panzootia se refere a uma <u>epidemia em larga</u> escala envolvendo a disseminação de doenças, em populações animais, <u>nos continentes</u> ou mesmo no mundo. O conceito de panzootia se assemelha ao de pandemia, porém em populações animais.

d) Ocorrência esporádica: trata-se da ocorrência da enfermidade de forma maneira irregular, resultando em <u>surtos localizados</u>.

Pessoal, e qual é o conceito de surto? Vocês sabem?

Surto é uma ocorrência epidêmica, na qual os casos estão relacionados entre si, e atingem uma área geográfica delimitada ou uma população restrita a uma instituição como colégios, quartéis e creches (Rio de Janeiro, 2019).

E aí, o que acharam do nosso estudo sobre as formas de ocorrência das doenças? Fácil, não é mesmo? Pois, adivinhem...esse tema cai muito em prova! Vamos prosseguir!

1.6 – Estudos epidemiológicos

Estudamos, anteriormente, que a Epidemiologia é uma ciência que estuda os eventos de saúde que ocorrem em uma população e, para isso, se utiliza de **estudos** acerca da **distribuição da doença** e dos **fatores** que contribuem para a sua **ocorrência** nas populações.

Mas qual é o conceito de estudo epidemiológico?

Estudo epidemiológico: todo estudo "que focaliza a ocorrência de um fenômeno numa população ou amostra representativa, e se baseia na observação dos fatos e suas variações" (Botelho & Freitas, 2019).

A partir deste conceito, já podemos imaginar que existe uma diversidade de maneiras de realizar os estudos epidemiológicos, que irão variar de acordo com a características do estudo e as necessidades do pesquisador.

Os estudos epidemiológicos apresentam duas características ou componentes distintos: uma característica ou **estudo descritivo**, que se refere ao estudo da distribuição de uma doença em uma população; e uma característica ou **estudo analítico**, que procura estabelecer relações de causa e efeito, com o objeto de estudo.

A análise epidemiológica de uma situação ou evento em saúde se inicia, necessariamente, por uma descrição, relacionada com as variáveis ligadas às pessoas, ao local de ocorrência e ao tempo, constituindo o que chamamos de **epidemiologia descritiva**.

Em seguida, a descrição do evento resulta no estabelecimento de uma **hipótese** acerca de possíveis fatores determinantes.

Uma vez formulada a hipótese, é necessário **testá-la** através de procedimentos que permitam a verificação de evidências e que estabeleçam uma relação de causa e efeito, entre o fator suspeito e a doença, ou condição sob estudo.

Os estudos realizados para testar a hipótese de associação entre a causa e o efeito dos eventos fazem parte da **epidemiologia analítica**.

Com base na descrição de um evento, estabelecimento de uma hipótese e realização de um estudo analítico, pode-se chegar a conclusões sobre a possível existência de uma relação de causa e efeito nos fatores estudados ou, simplesmente, concluir que novos estudos descritivos são necessários para que outras hipóteses sejam formuladas.

A esse processo de descrição – formulação de hipótese – estudo analítico – conclusão dá-se o nome de ciclo epidemiológico.

Portanto, como **epidemiologia analítica** entende-se a parte do **método epidemiológico** que objetiva **testar as hipóteses** de associação entre possíveis causas e efeitos.

Na epidemiologia, a variável dependente é relacionada com o efeito ou condição ao passo que a variável independente é relacionada com o fator causal suspeito.

Portanto, a hipótese a ser testada é que a variável dependente (efeito ou condição, como a doença, por exemplo) sofra influência da variável independente (fator causal), caracterizando uma associação entre ambas.

Com base nessa introdução, classificaremos os estudos epidemiológicos da seguinte maneira (Figura 4):

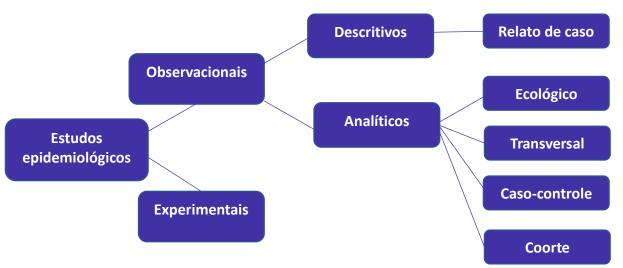


Figura 4. Classificação dos estudos epidemiológicos

I. Observacionais: caracterizados pela não interferência do pesquisador no estudo.

Nos estudos observacionais o pesquisador apenas realiza a observação dos eventos e relaciona os efeitos nos grupos de indivíduos expostos e grupos de indivíduos não-expostos.

Os estudos observacionais são subdivididos em:

- a. Estudos descritivos
- b. Estudos analíticos
 - b.1. Ecológicos;
 - b.2. Seccional ou transversal;
 - b.3. Caso-controle;
 - b.4. Coorte.
- II. Experimentais: caracterizados pela interferência do pesquisador no estudo.

Nos estudos experimentais o pesquisador realiza experimentos, determina os fatores, o grau e o grupo a ser exposto. Além disso, nos grupos experimentais há a manipulação controlada dos efeitos a serem estudados, através da aplicação de métodos de controle ou prevenção do objeto de estudo.

Até aqui, vimos a divisão dos estudos epidemiológicos em dois grandes grupos principais: os estudos observacionais, nos quais não há interferência do pesquisador; e os grupos experimentais, nos quais o pesquisador interfere, manipula os efeitos de maneira controlada, a fim de testar sua hipótese.

Agora, estudaremos as características dos estudos descritivos e estudos analíticos, que são subdivisões dos estudos observacionais. Portanto, em relação aos estudos observacionais, temos as seguintes características:

a. Estudos descritivos: trabalham com a análise da distribuição das doenças em relação ao tempo, lugar e características da população.

Os estudos descritivos têm como objetivo identificar a origem das doenças, seus fatores de risco e formas de propagação. Os estudos descritivos trabalham com a geração de hipóteses.

b. Estudos analíticos: trabalham com a relação da causa da doença e eventos em saúde e os fatores que se relacionam ou determinam esses eventos.

Os estudos analíticos têm como objetivo **estabelecer o comportamento e a distribuição das doenças** na população. Os estudos analíticos trabalham testando as hipóteses geradas nos estudos descritivos.

• Estudos Observacionais

As questões de natureza ética limitam e desenvolvimento de estudos experimentais com modelos humanos e, por conta disso, os estudos de associação entre os fatores de risco e as doenças é realizado, frequentemente, por meio de modelos não experimentais ou observacionais.

Esses estudos têm como principal característica o fato de que a alocação é realizada pela natureza, sem a interferência do pesquisador.

Estudaremos, mais detalhadamente, sobre os estudos descritivos e analíticos, a seguir.

a) Estudos descritivos

Os **estudos descritivos** fazem parte do contexto da **epidemiologia descritiva** e têm como objetivo a **determinação da distribuição das doenças** de acordo com o tempo, lugar ou características da população.

Os **estudos descritivos** descrevem os padrões de ocorrência de doenças, ou de agravos à saúde, em uma população, de acordo com certas características, particularmente em relação à pessoa, ao lugar e ao tempo (Franco & Passos, 2011).

Para a realização desses estudos, são feitas as seguintes perguntas:

- I. Quem adoece?
- II. Onde adoece?
- III. Quando adoece?

Para responder a essas perguntas, os estudos descritivos se utilizam tanto dados já existentes e publicados, que são denominados dados secundários (ex.: índices mortalidade), quanto dados coletados no decorrer do processo de estudo, que são denominados dados primários.

Nesse sentido, na epidemiologia descritiva ocorre a observação de como a **incidência** ou a **prevalência** de determinada doença se comporta em relação a determinados fatores relacionados ao tempo, ao lugar e a pessoa.

Podemos dizer, também, que os estudos descritivos informam sobre a distribuição de um evento na população, em termos de incidência ou prevalência (Eduardo, 2006).

Portanto, quando o comportamento da doença se altera em função de algum fator relacionado ao tempo, lugar ou pessoa, o pesquisador consegue determinar os grupos de risco e estabelecer as medidas de controle.

Os estudos descritivos possibilitam a caracterização da doença ou agravo em saúde no:

Tempo: curso da doença, período de incubação e tipo de curva epidemiológica.

Lugar: distribuição e extensão geográfica da doença.

Pessoa: grupo de pessoas, faixa etária, exposição aos fatores de risco.

Em relação às características das pessoas, estas incluem:

- I. Fatores demográficos: idade, sexo, etnia, ocupação, estado civil, classe social;
- II. Variáveis relacionadas com o estilo de vida: alimentação, consumo de álcool e drogas, prática de exercícios.

Em relação às características de lugar, estas se referem à:

I. Distribuição geográfica das doenças: o que inclui entre municípios, regiões, países.

Em relação às características de tempo, os estudos descritivos podem:

- I. Avaliar as variações cíclicas e sazonais na ocorrência das doenças;
- II. Comparar a frequência da doença nos dias atuais, com os períodos do passado (cinco, dez, cinquenta anos atrás).

Tudo bem, pessoal? Compreendido até aqui? Vamos prosseguir.

Estudamos, anteriormente, sobre a tríade epidemiológica. Vocês lembram?

Essa tríade é composta pelo **hospedeiro**, **agente etiológico** e o **meio ambiente**, os quais apresentam uma série de elementos que, juntos, compõem a cadeia epidemiológica. A interação do conjunto de fatores

relativos ao hospedeiro, agente etiológico e o meio é responsável pela manutenção ou pela variação das frequências das doenças.

Nesse sentido, quando esses fatores estão atuando dentro dos limites usualmente previstos, dizemos que a doença está ocorrendo em sua forma **endêmica**. Isto equivale a dizer que o número de casos da doença está ocorrendo dentro de uma faixa de variação casual, esperada, caracterizando o perfil endêmico da doença.

Estão lembrados desses conceitos?

Por outro lado, quando a doença varia de maneira irregular em uma população, em determinado período, com o número de casos maior do que o esperado em relação a sua frequência usual, dizemos que a doença está apresentando sua forma epidêmica.

Além das variações no número de casos da doença, também é possível observar o que chamamos de variações sazonais ou estacionais e, ainda, as variações ou tendência seculares.

Ainda que a doença apresente sua incidência dentro dos limites esperados para determinada localidade, nota-se uma variação natural das enfermidades que acompanham determinados períodos do ano (como os períodos de chuva, por exemplo) ou, ainda, a sequência das estações do ano. Essas variações são denominadas de variações sazonais ou estacionais.

Por outro lado, também existem variações que ocorrem de maneira gradual durante longos períodos, como décadas e até séculos. A essas variações dá-se o nome de variações ou tendências seculares.

O estudo das variações sazonais e seculares é importante pois:

- I. Possibilita o desenvolvimento de melhores técnicas de diagnóstico e, por conseguinte, favorece o relato de um maior número de casos, ainda que a doença não tenha se tornado mais frequente.
 - II. Favorece a mudança de conceitos e terminologias;
- III. Permite avaliar as mudanças que ocorreram, ao longo do tempo, nos fatores relacionados com a ocorrência da doença o que, por sua vez, favorece a identificação da população sob risco;
- IV. Favorece a avaliação da sobrevida dos pacientes acometidos por determinada doença, em decorrência da melhoria dos protocolos de tratamento ou em função da aplicação de tratamento precoce;
- V. Permite detectar mudanças na incidência de determinada doença em função de alterações ambientais ou mudanças no estilo de vida;
 - VI. Permite conhecer as variações nos fatores de virulência do agente etiológico.

Por fim, os estudos descritivos são importantes ferramentas para a avaliação das condições de saúde de uma população, a partir dos quais é possível estabelecer as medidas preventivas e de controle a serem desenvolvidas.

O conhecimento sobre a forma da ocorrência de uma doença na população e seus diferentes grupos de risco, possibilita os profissionais de saúde a atuarem precocemente e estabelecerem os programas e as medidas de saúde adequadas, com definição de prioridades, além de critérios de avaliação das medidas adotadas.

Os elementos fornecidos pelos estudos descritivos, em relação à distribuição da ocorrência das doenças no tempo, no espaço e segundo as características da população são, frequentemente, as primeiras informações sobre os determinantes das doenças.

Os estudos descritivos são considerados a primeira etapa do método epidemiológico.

Podem utilizar informações **já publicadas** sobre as características de pessoas, lugar e tempo, o que permite que esses estudos sejam realizados com facilidade e em curto período de tempo.

Por outro lado, também podem **obter informações** ao longo do processo de estudo, por meio de levantamentos ou inquéritos, que abrangem toda a população, ou amostras desta.

Portanto, os estudos descritivos permitem a verificação de associações estatísticas que conduzem à **formulação de hipóteses** relacionadas aos fatores determinantes das doenças, que podem ser testadas, posteriormente, com estudos analíticos específicos.

É um exemplo de estudo descritivo o **relato de caso** que consiste em uma descrição cuidadosa das características clínicas de um paciente, realizada por um ou mais profissionais de saúde, em geral médicos.

O relato de caso pode se expandir para uma série de casos, quando ocorrem a descrição das características clínicas de diversos pacientes que apresentem determinada condição de saúde ou doença.

b) Estudos analíticos

Os **estudos analíticos** são **estudos comparativos** que trabalham **testando hipóteses**. A partir desses estudos é possível estabelecer uma relação de causa e efeito, exposição e doença.

Os estudos analíticos se dividem em:

b1. Ecológicos;

- b2. Estudo seccional ou transversal;
- b3. Caso-controle;
- b4. Coorte.

E qual é a diferença entre eles?

Basicamente, nos **estudos ecológicos**, a verificação da relação de exposição a determinados fatores e a ocorrência da doença é realizada para **grupos de indivíduos**.

Nos demais estudos, a verificação da relação de exposição a determinados fatores e a ocorrência da doença ou evento de interesse são determinados para o indivíduo.

Além disso, as principais diferenças entre os estudos seccionais, caso-controle e de coorte estão na **forma de seleção dos participantes** para o estudo e na capacidade de mensuração da exposição em períodos do passado.

Estudaremos, detalhadamente, cada um desses estudos a seguir.

b1. Estudos ecológicos

Nos **estudos ecológicos**, objetiva-se avaliar a **relação entre a ocorrência da doença** e os fatores de exposição de um **grupo de indivíduos**. No estudo ecológico não se tem informação da doença e a exposição de um indivíduo, mas sim de um grupo populacional como um todo.

Estudos ecológicos: utilizam dados populacionais para comparar a frequência de doenças entre diferentes grupos, durante o mesmo período de tempo, ou na mesma população em diferentes períodos de tempo (Franco & Passos, 2011).

Os estudos ecológicos realizam comparações entre continentes, países, localidades e as associações encontradas nesses estudos são importantes a formulação de hipóteses sobre os fatores determinantes ou causadores de doenças.

De uma maneira geral, os estudos ecológicos:

- I. avaliam as tendências das doenças com base em informações de diferentes grupos;
- II. utilizam como unidades de análise as áreas geográficas;
- III. são utilizados para a criação de hipóteses;
- IV. são realizados por meio de levantamentos estatísticos.

Os **estudos ecológicos** apresentam como **vantagens** a possibilidade de avaliação e a associação da ocorrência das doenças, assim como os fatores de exposição, de uma população, criando-se uma relação de causa e efeito.

Por outro lado, são limitações do estudo ecológico:

- I. presença de viés ecológico;
- II. não permitem associações individuais entre os fatores de exposição e a doença;
- III. os resultados são apresentados por uma exposição média da população e não em valores individuais;
- IV. as informações obtidas são oriundas de diferentes fontes, que podem apresentar diferenças em relação à qualidade;
 - V. apresentam dificuldade no controle dos vieses ou fatores de tendenciosidade.

Pessoal, vocês sabem o que é viés?

Viés é um erro sistemático no estudo.

São tipos comuns de viés:

Viés metodológico: também chamado de erro sistemático, vício, tendenciosidade, desvio.

Viés de seleção: se referem aos erros referentes à escolha da população/pessoas.

Viés de aferição: se referem aos erros na coleta e obtenção das informações, nos formulários, nas perguntas, despreparo dos entrevistadores.

Viés de confundimento: se referem às interações entre variáveis, outras associações, análise estatística inadequada.

No nosso caso, o viés ecológico ocorre em função de as associações observadas entre os grupos populacionais não ocorrerem, necessariamente, quando transpostas ao nível dos indivíduos (Lima-Costa & Barreto, 2003).

Compreenderam?

b2. Estudos seccionais ou transversais

Sinônimos: estudos seccionais, estudos de prevalência ou de corte transversal.

Nos **estudos seccionais** são utilizados para determinar a **prevalência** de uma **doença** em uma população específica, na qual as características dos indivíduos doentes são comparadas com as dos indivíduos não doentes (Lima-Costa & Barreto, 2003).

Estudos seccionais: caracterizam-se pela seleção dos participantes a partir de uma população ou uma amostra, sem que o investigador saiba, a princípio, quem são os doentes, os sadios, os expostos e os não expostos (Franco & Passos, 2011).

Os resultados obtidos dos estudos seccionais equivalem a uma "fotografia" da situação de saúde em uma população, exibindo a relação de saúde-doença no momento da realização do estudo. Na maioria dos casos, não é possível definir se a exposição aos fatores determinantes da doença precede ou resulta da doença.

Em outras palavras, os estudos seccionais:

- I. Relacionam a causa e o efeito, ou a exposição ao fator determinante e a ocorrência da doença no indivíduo, de maneira simultânea;
 - II. A determinação dos doentes e não doentes só é possível a partir da análise dos dados.

Uma característica importante do estudo seccional é fato de não ser possível determinar se a exposição é anterior ou em consequência da doença ou agravo em saúde.

Portanto, os estudos seccionais não são interessantes para investigar associações de causa e efeito!

Se o estudo seccional é não interessante para determinar uma relação de causa e efeito, qual seria seu objetivo?

O objetivo do estudo seccional é identificar grupos e características que possibilitem uma intervenção e criar hipóteses acerca das causas das doenças.

Apesar dessas restrições, os estudos seccionais são muito utilizados em estudos epidemiológicos relacionados a área de saúde, uma vez que apresentam as seguintes vantagens:

- I. Permitem verificar a existência de associações e, portanto, atuam como geradores de hipóteses;
 - II. Permitem conhecer a distribuição de doenças e eventos em saúde em uma população;
 - III. Possuem facilidade operacional, rapidez de execução e custos reduzido.

As vantagens do estudo seccional permitem que eles sejam, com frequência, realizados sequencialmente em uma população, em diferentes momentos. Isto, por sua vez, permite conhecer a tendência das doenças, assim como verificar a eficácia de programas específicos de controle.

Um estudo seccional permite a determinação da prevalência da doença na população estudada!

Deriva daí a denominação estudos de prevalência, usada como sinônimo dos estudos seccionais.

Por fim, estudo seccional é delineado a partir das seguintes etapas:

- 1. Seleção do grupo (população) a ser estudado;
- 2. Verificação da exposição aos fatores e da doença simultaneamente;
- 3. Análises de dados.

b3. Estudos caso-controle

Nos estudos do tipo caso-controle ocorre, primeiramente, a identificação dos casos, ou seja, os indivíduos que apresentam a doença.

Em seguida, realiza-se a **identificação**, para fins de comparação, **dos controles**, ou indivíduos que não apresentam a doença. Por último, determina-se a *odds ratio* da exposição entre casos e controles.

Estudos caso-controle: caracterizam-se pela observação do efeito (doença) para a investigação da causa (exposição).

Nos estudos do tipo caso-controle o ponto de partida é a **variável dependente**, ou seja, **a doença** ou condição de saúde.

A metodologia dos estudos do tipo caso-controle se baseia na seleção de um grupo de indivíduos que apresente a doença a ser estudada, para compor o grupo caso, e um grupo de indivíduos que não apresente a doença, para compor o grupo controle.

Atenção! Em **ambos os grupos**, investiga-se a presença da **variável independente** (exposição) de maneira comparativa.

Logo, a essência dos estudos do tipo caso-controle está na comparação dos percentuais de exposição ao fator causal suspeito (variável independente) entre indivíduos doentes e não doentes.

Contudo, há de se ter cuidado na obtenção das informações do estudo. A coleta de informações é uma etapa crítica na metodologia, visto que favorece a presença de alguns vieses, conforme estudaremos adiante.

Os estudos do tipo caso-controle apresentam como vantagens:

- I. celeridade no desenvolvimento do estudo;
- II. menor custo de pesquisa;
- III. eficiente no estudo de doenças raras;
- IV. não exposição dos participantes à risco;
- V. permite a investigação simultânea de diferentes hipóteses.

Por outro lado, os estudos do tipo caso-controle também apresentam algumas desvantagens:

- I. são passíveis de alguns tipos de viés como:
- a. **de seleção** ou seja, os casos e os controles podem apresentar diferença, devido a um erro na seleção de participantes
- b. **de memória** os casos e os controles podem apresentar diferenças em decorrência da sua capacidade de lembrar a história da exposição.
- II. não fornecimento de medidas diretas de risco;
- III. apresenta dificuldade em estabelecer uma relação temporal definida entre o fator suspeito e a doença;
- IV. apresenta dificuldade de conhecer com precisão a representatividade dos casos e dos controles selecionados para o estudo.

Nesse sentido, um cuidado fundamental a ser tomado nos estudos caso-controle é com a representatividade dos participantes com relação à sua população de origem, em termos de história de exposição.

Assim, quando os indivíduos selecionados como casos forem quando comparados ao conjunto de indivíduos com a mesma doença na população, ambos os grupos devem apresentar exposição semelhante ao fator de risco em estudo.

Por fim, os estudos de caso-controle são delineados a partir das seguintes etapas:

- 1. seleção dos indivíduos com as características desejadas para a investigação do tipo exposição-doença;
 - 2. escolha dos casos e controles;
 - 3. obtenção de informações referentes à exposição dos participantes;
 - 4. análise dos resultados.

Ao contrário da metodologia dos estudos de coorte (estudaremos a seguir), nos estudos do tipo casocontrole **não é possível calcular coeficientes de incidência**, uma vez que o estudo é realizado com indivíduos doentes e saudáveis. Portanto, não é possível comparar riscos diferentes e calcular diretamente o risco relativo.

Porém, nos estudos caso-controle, pode-se utilizar uma **medida indireta de risco relativo**, conhecida como **odds ratio** (OR).

O termo *odds* refere-se à razão entre a probabilidade de ocorrência de um fenômeno e a probabilidade da sua não ocorrência (Franco & Passos, 2011).

Odds ratio é a razão de produtos cruzados ou razão de prevalências, que compara a proporção de expostos entre os casos com a proporção de expostos entre os controles ad/bc (Eduardo, 2006).

Portanto, uma doença que apresente uma probabilidade de ocorrência de 50% terá, igualmente, uma probabilidade de não ocorrência de 50%, resultando em um odds de 1:1.

Por outro lado, uma doença de apresente probabilidade de ocorrência de 80% terá seu *odds* dado por 80/20, resultando em 4:1.

Até aqui, pessoal, ficou claro? Vamos prosseguir.

O *odds ratio* indica a força da associação. Em outras palavras, expressa o quanto a exposição eleva o risco de aparecimento da doença.

Basicamente, podemos interpretar o odds ratio da seguinte maneira:

Quando o resultado do *odds ratio* for maior que 1: entende-se que há a associação de causa e efeito.

Quando o resultado do *odds ratio* for **igual a 1**: entende-se que **não há associação** de causa e efeito.

Quando o resultado do odds ratio for menor a 1: entende-se que há um fator de proteção.

Quando um *odds ratio* apresentar resultado igual a 2, isto significa um risco 2 vezes maior de a doença aparecer entre os expostos ao fator suspeito de causar a doença.

Nesse mesmo raciocínio, um *odds ratio* igual a 1 representa ausência de risco associado à exposição ao fator; ao passo que um valor igual a 0,5 indica que a exposição parece atuar como um fator de proteção contra a doença.

Atenção! Além do *odds ratio*, estudos de caso-controle permitem, ainda, o cálculo do risco atribuível porcentual (RAP), entre os expostos.

O RAP é calculado através da fórmula:

RAP = (OR – 1) / OR x 100

Os estudos caso-controle são:

- I. investigações que partem do efeito para investigar a causa;
- II. tratam-se de pesquisas retrospectivas, ou seja, de trás para frente, após a ocorrência da doença já ter sido consumada;
- III. os participantes do grupo de casos são escolhidos em função de já apresentarem a doença; ao passo que os participantes do grupo controle, são escolhidos por não apresentarem a doença;
- IV. a investigação é feita de modo comparativo em relação à exposição aos fatores de risco.
- V. a partir dos estudos caso-controle é possível obter a *odds ratio*, que indica a força de associação entre a causa e o efeito; e o risco atribuível porcentual entre os expostos.

b4. Estudos de coorte

Os estudos de coorte são caracterizados pela classificação dos participantes em grupos de expostos e não expostos ao fator em questão, seguido do acompanhamento dos indivíduos de ambos os grupos, a fim de verificar a incidência da doença.

Estudos de coorte: apresentam como principal característica a seleção da população a partir da variável independente, aproveitando que diferentes grupos se expõem ou não, de maneira natural, à ação de um fator de risco qualquer (Franco & Passos, 2011).

Logo, se o fator de exposição estiver relacionado com a doença, espera-se que os indivíduos expostos apresentem maior incidência da doença em relação aos não expostos.

No **estudo de coorte** o pesquisador **não determina a exposição**, mas usa grupos naturalmente expostos ou não a um fator de risco para determinada doença para, então, medir o aparecimento de um resultado que esteja associado à exposição

Atenção! De maneira conceitual o estudo de coorte se assemelha aos estudos experimentais, deles se diferindo pelo fato de a determinação da exposição não ser definida pelo experimentador.

Os **estudos de coorte** podem ser classificados em: **prospectivos** ou **retrospectivos**, com base no momento da seleção dos grupos de estudo (Figura 5).

Figura 5. Classificação dos estudos de coorte

- a) Prospectivo: quando os grupos de expostos e não expostos são selecionados no momento zero (presente) e acompanhados ao longo de um período, para a identificação dos casos da doença que venham a ocorrer em ambos os grupos.
- **b) Retrospectivo ou histórico:** a seleção dos grupos de indivíduos é feita no presente, com base em uma exposição ocorrida no passado.

O estudo de **coorte retrospectivo** apresenta como grande **vantagem** a não existência do principal problema na realização dos estudos de coorte: o longo tempo demandado para acompanhamento dos indivíduos e detecção da doença investigada.

Por outro lado, os estudos retrospectivos exigem registros de boa qualidade, que possibilitem a avaliação retrospectiva dos grupos de expostos e não expostos.

A análise de um **estudo de coorte** baseia-se na **comparação** entre os **coeficientes de incidência** da doença observados nos grupos de expostos e não expostos.

Além disso, por meio do estudo de coorte é possível calcular o **risco relativo**, obtido pela divisão do coeficiente de incidência entre os expostos pelo coeficiente de incidência entre os não expostos

O risco relativo expressa uma força da associação, ou seja, o quanto a exposição a determinado fator eleva o risco de aparecimento da doença.

Podemos interpretar o risco relativo da seguinte maneira:

Quando o risco relativo for maior que 1 (por exemplo, igual a 2): entende-se que há um risco duas vezes maior de a doença se apresentar entre os expostos, quando comparado aos não-expostos.

Quando o **risco relativo** for **igual a 1**: entende-se que não há risco associado à exposição, uma vez que a incidência foi igual nos dois grupos.

Quando o **risco relativo** for **menor a 1**: entende-se que a exposição parece atuar como um fator de proteção.

Por fim, o estudo de coorte é delineado a partir das seguintes etapas:

- 1. seleção dos grupos de expostos e não expostos;
- 2. acompanhamento de ambos os grupos para verificação do aparecimento de casos e análise.

No estudo de coorte a verificação da exposição ocorre antes do aparecimento da doença, o que, por sua vez, inviabiliza o surgimento do viés de memória (presente, por exemplo, nos estudos de casocontrole).

Além da inviabilização do viés de memória, o estudo coorte também **reduz a possibilidade** de **viés de seleção**, uma vez que os indivíduos, que desenvolverem ou não as doenças não são selecionados e sim, identificados dentro dos grupos que foram expostos ou não aos fatores.

Assim, os estudos de coorte favorecem o **estudo da história natural das doenças** e a avaliação da incidência da doença entre o grupo de expostos e não expostos.

O estudo de coorte apresenta como vantagens:

- I. inviabiliza o surgimento de vieses;
- II. possibilita o estudo da história natural da doença;
- III. possibilita a análise de incidência entre os grupos de expostos e não expostos.

Algumas desvantagens do estudo de coorte, incluem:

- I. elevado custo;
- II. perda de participantes do estudo, em decorrência da necessidade de longo período de acompanhamento.

Em resumo, os estudos de coorte:

- I. são estudos que partem dos fatores de exposição para investigação do efeito;
- II. podem ser prospectivos ou retrospectivos;
- III. no coorte prospectivo, os grupos são acompanhados por um período longo de tempo;
- IV. são estudos que permitem comparar os coeficientes de incidência da doença observados nos grupos de expostos e não expostos;
- V. permitem o cálculo do risco relativo.

Estudos Experimentais

Sinônimos: estudos de intervenção; ensaio clínico ou clinical trial (quando aplicados a conjuntos de indivíduos); ensaio em comunidades ou community trial (quando aplicados a comunidades inteiras).

Estudos experimentais: caracterizam-se pelo fato de o investigador determinar os grupos de expostos e de não expostos a um certo fator e, posteriormente, medir os resultados (Franco & Passos, 2011).

Em outras palavras, nos **estudos experimentais** ocorre uma tentativa de **manipular as condições determinantes da doença** objeto de estudo.

Diversas variáveis como comportamento, intensidade de exposição ou utilização de métodos de tratamento podem ser alteradas, em maior ou menor escala, com fins de investigação.

O ponto de partida do estudo experimental é a variável independente (fator de exposição), e a distribuição dos participantes nos grupos de expostos e de não expostos se faz de modo intencional por parte do pesquisador.

A grande vantagem do estudo experimental é a **alocação casual e probabilística**, o que, por sua vez, constitui um importante meio de controlar as variáveis de confusão, uma vez que torna os grupos homogêneos em relação a elas.

E aí, pessoal, tudo bem? Vistas essas informações, acerca dos métodos ou estudo epidemiológicos, vamos, agora, estudar a forma de apresentação desses dados, que é por meio da elaboração da tabela-padrão, tabela de contingência ou tabela 2 x 2.

Na tabela 2 x 2 temos quatro tipos de desfechos, representados pelas letras a, b, c e d que aparecem no centro dos quadros (Tabela 1). Elas possuem semelhante estrutura de disposição de variáveis. Na primeira coluna da tabela, observamos a exposição ao fator, seja ela uma intervenção ou um fator de risco.

Na coluna seguinte observam-se os **efeitos** (os casos de doenças, óbitos, etc) expressos em duas categorias: presente ou ausente. No interior das células, estão presentes as frequências das combinações de

exposição e doença, possíveis de serem encontradas em uma população e representadas pelas letras a, b, c e d. Por fim, os **totais** constituem a soma das frequências no interior dos quadros.

Tabela 1 - Tabela padrão para apresentação dos resultados nos estudos de ensaio clínico randomizado, coorte, caso-controle e transversal.

Exposição ao fator	Doença		Total
	Sim	Não	IOldi
Sim	a	b	a+b
Não	С	d	c + d
Total	a + c	b + d	a + b + c + d

a = número de indivíduos expostos e doentes

b = número de indivíduos expostos e sadios

c = número de indivíduos não-expostos e doentes

d = número de indivíduos não-expostos e sadios

a + b + c + d = número total de pessoas (N)

Por que a tabela de contingência é tão importante?

Porque ela constitui a base de todo o raciocínio analítico da epidemiologia e, portanto, vocês a utilizarão tabela para a resolução de diversas questões.

QUESTÕES COMENTADAS

Outras bancas

1. (FEPESE / Prefeitura de Florianópolis - SC - 2019) Os inúmeros casos de Parvovirose Canina, ocorridos durante os anos de 1978 e 1979, em várias partes do mundo, configuraram um evento de Pandemia da citada virose.

Assinale a alternativa que define corretamente pandemia.

- a) Ocorrência episódica e isolada de uma enfermidade.
- b) Ocorrência acima dos valores esperados e atingindo uma única área geográfica.
- c) Ocorrência acima dos valores esperados e atingindo grandes extensões geográficas.
- d) Ocorrência dentro dos valores esperados e atingindo pequenas áreas geográficas.
- e) Ocorrência abaixo dos valores esperados e atingindo grandes áreas geográficas.

Comentários

A questão requer do candidato o conhecimento sobre o conceito de pandemia. Vamos relembrá-lo? Pandemia é a ocorrência de uma doença acima dos valores esperados e que atinge grandes extensões geográficas, podendo atingir mais de um país ou continente.

Portanto, a alternativa C está correta e é o gabarito da questão.

2. (FEPESE / Prefeitura de Florianópolis - SC - 2019) Enfermidades em uma população, sobremaneira doenças transmissíveis, resultam de uma sequência de eventos que constituem a Cadeia Epidemiológica. Ela é um sistema cíclico pelo qual um agente etiológico é eliminado de um hospedeiro, transferido ao ambiente e alcança um novo hospedeiro onde reproduz o ciclo.

Assinale a alternativa que apresenta corretamente os elementos de uma cadeia epidemiológica.

- a) Via de eliminação; meio de transmissão; porta de entrada
- b) Meio de transmissão; via de eliminação; porta de entrada

- c) Fonte de infecção; porta de entrada; via de eliminação
- d) Porta de entrada; fonte de infecção; via de eliminação
- e) Fonte de infecção; via de eliminação; meio de transmissão; porta de entrada

Comentários

A questão requer do candidato o conhecimento dos elementos que compõem a cadeia epidemiológica, que são: o agente causal, o reservatório ou fonte de infecção, as portas de entrada e de saída/eliminação do hospedeito, a susceptibilidade do hospedeiro e o modo de transmissão do agente.

Portanto, a alternativa E está correta e é o gabarito da questão.

3. (FEPESE / Prefeitura de Bombinhas - SC - 2019) Uma doença é dita como endêmica quando sua ocorrência obedece a um padrão relativamente estável, com prevalência e incidência elevadas.

Ou seja, o termo endemia refere-se a uma doença que ocorre:

- a) Quando atinge vários países de diferentes continentes.
- b) Habitualmente em uma população em determinada área geográfica.
- c) Em uma quantidade de casos não notificados em uma região geográfica.
- d) Da cura de um agravo dentro de um número esperado de casos para aquela região, naquele período de tempo.
- e) Geralmente com aparecimento muito lento e crônico que se propaga por determinado período de tempo, em determinada área geográfica.

Comentários

A questão requer do candidato o conhecimento sobre o conceito de endemia. Endemia trata-se da ocorrência uma doença em uma população dentro dos limites esperados. Ou seja, a doença ocorre de maneira constante e frequente, entendendo-se uma situação estável por um longo período de tempo.

Portanto, a alternativa B está correta e é o gabarito da questão.

4. (FCM / Prefeitura de Caranaíba - MG - 2019) Em relação aos conceitos básicos em epidemiologia, associe as colunas, relacionando corretamente o termo à sua respectiva explicação.

Termos (1) Epidemia (2) Endemia (3) Incidência (4) Prevalência (5) Surto

Explicação () Frequência de novos casos de uma determinada doença ou problema de saúde num determinado período de tempo, oriundo de uma população sob risco de adoecimento no início da observação. () Elevação brusca, temporária e significativamente acima do esperado da incidência de uma determinada doença. () Presença usual de uma doença, dentro dos limites esperados, em uma determinada área geográfica, por um período de tempo ilimitado. () Frequência de casos existentes de uma determinada doença, em uma determinada população e em um dado momento. () Elevação brusca da frequência esperada de uma determinada doença, em que todos os casos estão relacionados entre si, atingindo uma área pequena e delimitada.

A sequência correta dessa associação é

- a) 4, 5, 3, 2, 1.
- b) 1, 5, 3, 4, 2.
- c) 3, 1, 2, 4, 5.
- d) 2, 1, 5, 3, 4.

Comentários

A questão requer do candidato o conhecimento sobre alguns conceitos básicos em epidemiologia. Vamos relembrá-los?

- (1) **Epidemia**: ocorrência das enfermidades em um **patamar superior aos limites** esperados em determinado momento.
- (2) Endemia: ocorrência uma doença em uma população dentro dos limites esperados.
- (3) Incidência: número de casos novos de uma doença em uma população exposta ao risco de adoecer, em determinado período de tempo.
- (4) Prevalência: mede o número de casos existentes de uma doença em uma população, em determinado local e momento.
- (5) Surto: é uma ocorrência epidêmica, na qual os casos estão relacionados entre si, e atingem uma área geográfica delimitada ou uma população restrita a uma instituição como colégios, quartéis e creches

A sequência correta é 3, 1, 2, 4, 5 e, portanto, a **alternativa C** está correta e é o gabarito da questão.

- 5. (Prefeitura de Fortaleza / Prefeitura de Fortaleza CE 2018) Em relação à validação de testes de diagnóstico nos estudos epidemiológicos, marque V ou F, para verdadeiro ou falso, respectivamente.
- (___) Sensibilidade é a capacidade de um teste diagnóstico identificar os verdadeiros positivos nos indivíduos verdadeiramente doentes. Quanto mais sensível o teste, maior a chance de encontrar doentes. ()

Especificidade é a capacidade de um teste diagnóstico identificar os verdadeiros negativos nos indivíduos verdadeiramente sadios. Quanto mais específico o teste, maior a chance de encontrar sadios. (__) Valor preditivo positivo é a proporção de indivíduos verdadeiramente positivos em relação aos diagnósticos positivos pelo teste; isto é, mede a probabilidade de não ter a doença dado que o teste foi positivo. (__) Valor preditivo negativo é a proporção de indivíduos verdadeiramente negativos em relação aos diagnósticos negativos pelo teste; isto é, mede a probabilidade de ter a doença, dado que o teste foi negativo.

Está correta, de cima para baixo, a seguinte sequência:

- a) F-F-V-V.
- b) V-F-V-F.
- c) V-V-F-F.
- d) F-V-F-V.

Comentários:

A questão requer do candidato o conhecimento sobre as características dos testes diagnósticos. Nesse sentido, vamos revisar os aspectos relativos a cada um deles:

Sensibilidade: é probabilidade de um teste resultar positivo dado em indivíduos que apresentem a doença.

Especificidade: é probabilidade de um teste resultar negativo em indivíduos que não apresentem a doença.

Valor preditivo positivo (VPP): é a probabilidade de o paciente ter a doença dado que o teste resulte positivo.

Valor preditivo negativo (VPN): é a probabilidade de o paciente não ter a doença dado que o teste resulte negativo.

Revisadas as características dos testes a sequência correta das alternativas é: V-V-F-F

Portanto, a alternativa C é a correta e gabarito da questão.

REFERÊNCIAS

Bonita, R.; Beaglehole, R.; Kjellström, T. Epidemiologia básica. 2. ed. São Paulo. 2010.

Brasil. Secretaria de vigilância em saúde. Curso básico de vigilância epidemiológica. 2003. Disponível em: https://docplayer.com.br/28763027-Secretaria-de-vigilancia-em-saude-medidas-em-saude-coletiva-e-introducao-a-epidemiologia-descritiva-modulo-iii-unidade-i.html

Brasil. Módulo de Princípios de Epidemiologia para o Controle de Enfermidades (MOPECE). Módulo 2: Saúde e doença na população. 2010.

Botelho, L.; Freitas, S. Estudos epidemiológicos. Disponível em: http://www.acm.org.br/acm/acamt/documentos/curso_prova_titulo5/estudos-epidemiologicos-lucio-botelho.pdf

Dicionário de epidemiologia, saúde pública e zoonoses. Disponível em: https://edisciplinas.usp.br/mod/glossary/view.php?id=895978

Dicionário de significados. Disponível em: https://www.significados.com.br/morbidade/

Eduardo, M. B. P. Tipos de estudos epidemiológicos. 2006. Disponível em: www.saude.sp.gov.br > aulas > aula_desenhosepid

Franco, L. J..; Passos, A. D. C. Fundamentos de Epidemiologia. 2ª edição. 2011.

Glossário. Disponível em: https://www.medicinanet.com.br/conteudos/biblioteca/2198/glossario.htm

Lima-Costa, M. F.; Barreto, S. M. Tipos de estudos epidemiológicos: conceitos básicos e aplicações na área do envelhecimento. Epidemiologia e Serviços de Saúde, 12, 189 – 201, 2003.

ESSA LEI TODO MUNDO CON-IECE: PIRATARIA E CRIME.

Mas é sempre bom revisar o porquê e como você pode ser prejudicado com essa prática.

Professor investe seu tempo para elaborar os cursos e o site os coloca à venda.

Pirata divulga ilicitamente (grupos de rateio), utilizando-se do anonimato, nomes falsos ou laranjas (geralmente o pirata se anuncia como formador de "grupos solidários" de rateio que não visam lucro).

Pirata cria alunos fake praticando falsidade ideológica, comprando cursos do site em nome de pessoas aleatórias (usando nome, CPF, endereço e telefone de terceiros sem autorização).

Pirata compra, muitas vezes, clonando cartões de crédito (por vezes o sistema anti-fraude não consegue identificar o golpe a tempo).

Pirata fere os Termos de Uso, adultera as aulas e retira a identificação dos arquivos PDF (justamente porque a atividade é ilegal e ele não quer que seus fakes sejam identificados).

Pirata revende as aulas protegidas por direitos autorais, praticando concorrência desleal e em flagrante desrespeito à Lei de Direitos Autorais (Lei 9.610/98).

Concurseiro(a) desinformado participa de rateio, achando que nada disso está acontecendo e esperando se tornar servidor público para exigir o cumprimento das leis.

O professor que elaborou o curso não ganha nada, o site não recebe nada, e a pessoa que praticou todos os ilícitos anteriores (pirata) fica com o lucro.