

Características e Configurações do Sistema Operacional Linux	2
Sistema Multitarefa e Multiusuário	3
Kernel, Shell e Servidor de Janelas	3
Execução em Foreground ou Background	5
Agendamento de Tarefas	6
Sistemas de Arquivos	7
Estrutura dos Diretórios	9
Memória Virtual	9
Gerenciadores de Pacotes	10
Configuração de Serviços ou Funcionalidades	13
Interoperabilidade	15
Serviço de Diretório	17
Questões Comentadas	20
Usuários, grupos, permissões e controles de acesso	41
Questões Comentadas	44
Lista de Questões	47
GABARITO	63

PROF. EVANDRO DALLA VECCHIA

Autor do livro "Perícia Digital - Da investigação à análise forense", Mestre em Ciência da Computação (UFRGS), Bacharel em Ciência da Computação (PUCRS), Técnico em Redes de Computadores (Etcom/UFRGS) e em Processamento de Dados (Urcamp). Perito Criminal na área de Perícia Digital desde 2004 no Instituto-Geral de Perícias/RS. Professor de pósgraduação em diversas instituições, nas áreas de Perícia Digital, Perícia Criminal e Auditoria de Sistemas. Lecionou na graduação de 2006 a 2017, nas instituições PUCRS, Unisinos, entre outras. Professor em cursos de formação e aperfeiçoamento de Peritos Criminais, Delegados, Inspetores, Escrivães e Policiais Militares.

Áreas de cursos ministrados pelo professor no Estratégia: Computação Forense, Arquitetura de Computadores e Sistemas Operacionais.

Entre em contato: f o profevandrodallavecchia

CARACTERÍSTICAS E CONFIGURAÇÕES DO SISTEMA OPERACIONAL LINUX

Buenas, tudo belezinha? Vamos começar nossa aula com as características básicas do Linux, aquelas que quem já estuda sistemas operacionais conhece as classificações, então vamos ver onde o Linux se "encaixa".

Começamos dizendo que o Linux é um sistema operacional interativo, ou seja, diferentemente dos sistemas em lote ou os sistemas de tempo real, ele permite uma interação do usuário diretamente com o computador, mesmo durante a execução de um programa. Essa interação ocorre através de dispositivos de entrada (teclado, mouse, entre outros) e saída (monitor de vídeo, impressora, entre outros).

O usuário "administrador", que tem "poder total" sobre o sistema é o root e seu diretório "home" é o "/root". Os usuários "comuns" têm como seu diretório "home" o "/home/nome_usr", ex.: "/home/evandro".

A instalação do Linux pode ocorrer de algumas formas, sendo as mais comuns através de uma mídia (CD, DVD, pen drive) ou através da rede. No caso da mídia, obviamente ela precisa ser "bootável" e a BIOS deve estar configurada para ler primeiro o CD/DVD ou a USB (se for pen drive). Abaixo uma tela de instalação a partir de um CD.

A instalação pela rede exige mais conhecimento e geralmente é feita por técnicos de TI nas empresas. É necessário configurar um servidor TFTP e um DHCP que irá fornecer a mídia de instalação para as máquinas da sua rede local. Se a BIOS da máquina cliente suportar, é possível então inicializar o sistema de instalação a partir da rede (usando PXE e TFTP) e prosseguir com a instalação a partir da rede.

Muitas pessoas utilizam o Linux e o Windows no mesmo computador, cada um em uma partição (com seus respectivos sistemas de arquivos). E como é possível escolher qual deles deve ser

2

inicializado quando a máquina é ligada? Existem gerenciadores de boot que auxiliam nisso, sendo os mais conhecidos o LILO (*LInux LOader*) e o GRUB (*GRand Unifield Bootloader*). Abaixo podemos ver os dois (à esquerda o LILO e à direita o GRUB).

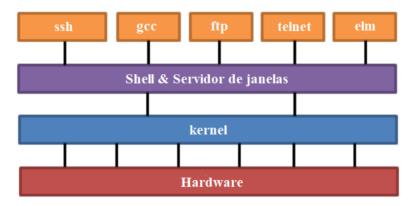

```
Ubuntu, kernel 2.6.22-10-generic
Ubuntu, kernel 2.6.22-10-generic (recovery mode)
Ubuntu, kernel 2.6.20-16-generic
Ubuntu, kernel 2.6.20-15-generic (recovery mode)
Ubuntu, kernel 2.6.20-15-generic
Ubuntu, kernel 2.6.20-15-generic (recovery mode)
Ubuntu, kernel 2.6.20-15-generic (recovery mode)
Ubuntu, memtest86+

Use the ↑ and ↓ keys to select which entry is highlighted.
Press enter to boot the selected OS, 'e' to edit the
сомманds before booting, or 'c' for a сомманd-line.
```

Ao escolher a partição, o *kernel* (veremos em breve o que é e para que serve) é carregado e inicializado. Na sequência há a execução dos scripts de inicialização do sistema.

Em relação à portabilidade, o Linux se sai muito bem! Ele não foi pensado para ser um sistema portátil, mas acabou indo nessa direção, tendo um dos núcleos de sistemas operacionais mais portáteis, sendo executado em sistemas desde o iPaq (um computador portátil) até o IBM S/390 (um mainframe). Na atualidade o Linux hoje funciona em dezenas de plataformas, desde mainframes até um relógio de pulso, passando por diversas arquiteturas: x86 (Intel, AMD), x86-64 (Intel EM64T, AMD64), ARM, PowerPC, Alpha, SPARC, entre outras, além de sistemas embarcados (handhelds, consoles de videogames, PVR – Personal Video Recorder, telefones celulares, TVs etc.).

SISTEMA MULTITAREFA E MULTIUSUÁRIO


O Linux permite que vários processos sejam executados ao mesmo tempo (multitarefa), mesmo que haja apenas um processador na máquina. O sistema operacional faz o escalonamento dos processos no processador, dando a ilusão de um paralelismo (ocorre um pseudoparalelismo). O comando "ps", por exemplo, pode ser executado e você verá diversos processos em execução. Quando há a criação de um processo novo, ele passa a ser filho de outro e a chamada de sistema utilizada é a fork().

No Linux é possível que vários usuários utilizem ao mesmo tempo (multiusuário), então alguém pode deixar algumas aplicações em execução em sua sessão, bloquear o acesso e outra pessoa abrir uma outra sessão, executando novas aplicações. São permitidos vários usuários simultâneos, a não ser que seja definido um limite de sessões nos arquivos de configuração. O comando "who" pode ser executado para ver quem está logado no computador.

KERNEL, SHELL E SERVIDOR DE JANELAS

O kernel (núcleo) da maioria dos sistemas baseados em Unix (FreeBSD e derivados, Oracle Solaris, IBM AIX, HP-UX e todos os Linux e derivados) é monolítico. Mas o que é isso? Todo o conjunto de instruções de controle do hardware é executado no espaço de núcleo no modo de supervisão, ou seja, é um único executável que possui todos os códigos de suporte necessários agregados. Em

teoria, um kernel monolítico pode travar o sistema inteiro se 1 módulo parar de funcionar adequadamente.

Na figura acima podemos ver cinco aplicativos que utilizam alguma interface (shell ou servidor de janelas), que por sua vez faz a "ligação" com o kernel. E somente o kernel faz a iteração com o hardware (disco, teclado, monitor de vídeo etc.).

O shell é um interpretador de comandos (aquele terminal preto, geralmente) e sua função é ler a linha de comando, interpretar seu significado, executar o comando e devolver o resultado pelas saídas (monitor de vídeo, por exemplo). Na verdade, a interface shell é um arquivo executável, encarregado de interpretar comandos, enviá-los ao kernel e devolver resultados. Existem vários tipos de shell, sendo os mais comuns o sh (Bourne shell), o bash (Bourne again shell), o csh (C shell), o Tcsh (Tenex C shell), o ksh (Korn shell) e o zsh (Zero shell). Seus nomes normalmente correspondem ao nome do executável.

Alguns dos servidores de janelas (ambientes gráficos) mais populares do mundo Linux são Gnome, KDE, Cinnamon, MATE, XFCE, Pantheon, Deepin, entre outros Abaixo podemos ver uma tela do Gnome (à esquerda) e uma tela do KDE (à direita)

Uma característica interessante, por ser um sistema operacional de código aberto, é a possibilidade de compilar o kernel. Mas qual o motivo para isso? Para facilitar vamos a um exemplo: suponha que você tenha uma placa-mãe X e sua placa de rede integrada é uma da fabricante Y. No Kernel que você está usando (uma versão mais antiga) não há suporte para essa placa Y, ou seja, você não pode navegar na rede. Lendo a documentação do Kernel de uma versão mais recente, você constata que o suporte para Y foi adicionado. Então, se o kernel for atualizado será possível navegar na rede com tal placa com esse novo módulo.

Os módulos são partes do kernel que são carregadas somente quando solicitadas por algum aplicativo ou dispositivo e descarregadas da memória quando não são mais utilizadas. Dessa forma, evita-se a construção de um kernel grande (estático) que ocupe grande parte da memória com todos os drivers compilados e permite que partes do kernel ocupem a memória somente quando forem necessários.

A localização padrão dos módulos do kernel é a seguinte: "/lib/modules/versão_do_kernel/" e um comando que permite obter informações acerca do servidor é o "uname". Com o argumento "-a" é possível obter todas as informações, incluindo a versão do kernel. Abaixo um exemplo mostrando a versão do kernel (4.12):

```
[root@localhost lib]# uname -a
Linux localhost 4.12.0-rc6-g48ec1f0-dirty #21 Fri Aug 4 21:02:28 CEST 2017 i586
GNU/Linux
[root@localhost lib]#
```

EXECUÇÃO EM FOREGROUND OU BACKGROUND

Os processos podem ser executados de duas formas: em primeiro plano (*foreground*) ou em segundo plano (*background*). Os processos que executam em *foreground* são os que necessitam de interação direta com o usuário, incluindo a troca de informações. Os processos em *background* não necessitam dessa interação com o usuário.

Há situações em que é necessário passar um processo que está sendo executado em *foreground* para *background* e vice-versa. Por exemplo, em uma sessão de transferência de arquivos entre computadores remotos, a baixa velocidade da linha de transmissão pode fazer com que o tempo de transferência leve muito tempo. Assim, seria interessante passar o processo para segundo plano, liberando o *shell* para outras atividades do usuário.

A passagem de um processo de *foreground* para *background* é realizada primeiro suspendendo o processo (CTRL + Z), seguido do comando "bg", que envia o processo para segundo plano (*background*). Observe que suspender a execução de um processo não significa finalizá-lo, apenas torná-lo temporariamente inativo!

A lista dos processos executados em *background* pode ser visualizada com o comando "jobs", que mostra o número da tarefa (*job*) associada. Se o usuário quiser interagir novamente com o processo, deve utilizar o comando "fg" seguido de % número_job. Exemplo:

```
estrategia:~$ jobs

[1] - Running
script.sh

[2] + Suspended (tty output) teste.sh
estrategia:~$ fg %2
```


O mais utilizado para executar em background é utilizar "&" logo após o nome do binário ou script. Por exemplo, se você deseja executar um script "aprovacao.sh", que vai realizar vários cálculos e no fim escrever em um arquivo, não é necessário que você fique com o *shell* "travado", aguardando a conclusão da tarefa. Então é só digitar (note que o *shell* não fica esperando a conclusão do *script*, já aguarda o próximo comando):

```
estrategia:~$ aprovacao.sh & estrategia:~$
```

Processos que tipicamente só são executados em *background*, pois não possuem interação com o usuário, são os *daemons*. Geralmente possuem um nome que terminam com a letra "d", como por exemplo, syslogd (*daemon* que gerencia o *log* do sistema). Em um ambiente Unix, o "processo pai" de um *daemon* é normalmente o processo init (PID=1). De forma geral, os sistemas operacionais iniciam *daemons* durante o processo de *boot*.

AGENDAMENTO DE TAREFAS

Para o agendamento de tarefas a aplicação mais conhecida é o Cron, que já existe há muito tempo e passou por muitos estágios de evolução. Porém, a maioria das suas implementações atuais (Vixie Cron, ISC Cron, BCron etc.) ainda se baseiam no pressuposto de que o sistema está em funcionamento de forma ininterrupta. Isso é um problema quando se utiliza a virtualização, quando os sistemas que operam sob demanda, sendo ligados e desligados conforme sua necessidade.

Além disso, os usuários de *notebooks* suspendem ou desligam seus equipamentos para transportálos, e até mesmo *desktops* e estações de trabalho são desligados para poupar energia. O resultado disso é que os *cronjobs* falham regularmente, pois o sistema se encontra desligado no momento em que a tarefa deveria ser executada!

Para contornar essa situação, algumas distribuições contam com o Anacron como alternativa ao Cron. O Anacron permite a criação de listas de tarefas que serão realizadas em intervalos prédefinidos e, quando o Anacron é inicializado, ele verifica essas listas e executa as tarefas ainda não realizadas. No entanto, o Anacron possui algumas limitações. A primeira é que ele não é um daemon, então precisa ser executado sempre que for necessário.

Outra questão é que o Anacron não está preparado para lidar com períodos de tempo menores do que dias. A combinação desses problemas pode levar a situações nas quais o Cron e o Anacron funcionam ao mesmo tempo, e algumas tarefas podem ser executadas duas vezes ou nenhuma!

Uma solução é o Fcron, que faz o que o Vixie Cron e o Anacron fazem e ainda mais. É possível usar o Fcron para agendar *cronjobs* com data e hora fixas, com intervalos de tempo ou até mesmo de acordo com a disponibilidade do sistema.

Independente da implementação utilizada, a configuração é muito parecida, e vale destacar também que o Cron (ou uma de suas variantes) é um programa de nível multiusuário, ou seja, cada usuário

pode agendar suas tarefas individualmente. Isso ocorre graças ao próprio arquivo onde são armazenados os scripts: o Crontab.

Como o próprio nome sugere, a estrutura do Crontab consiste em tabelas e nessas tabelas são preenchidas todas as informações referentes à tarefa: minutos; horas; dias do mês; mês; dias da semana; comando. Abaixo um exemplo do comando ("crontab -l" lista a crontab):

```
crontab -1
55 * * * 5 /home/root/bin/backup.sh
```

Agora vamos analisar alguns exemplos comentados:

executa cinco minutos depois da meia-noite, todos os dias (* = tudo)

executa às 14h15min no dia 1º de cada mês

executa às 22h nos dias de semana (1 a 5 = segunda-feira a sexta-feira)

0 22 * * 1-5 \$HOME/bin/script.sh

SISTEMAS DE ARQUIVOS

Quando falamos em armazenamento de informações a longo prazo temos três requisitos:

- 1. Deve ser possível armazenar um grande volume de informações;
- 2. As informações devem "sobreviver" ao término do processo (programa em execução);
- 3. Vários processos devem ser capazes de acessar as informações ao mesmo tempo (ex.: vários programas acessando o mesmo banco de dados).

A solução mais comum é armazenar as informações em mídias de armazenamento (HDs, SSDs, entre outras), em unidades chamadas arquivos. Tais informações armazenadas em arquivos devem ser persistentes, ou seja, não devem ser afetadas pela criação ou término de um processo. O arquivo geralmente só pode "sumir" se for excluído por seu criador (ou pelo administrador do sistema).

O sistema operacional faz o gerenciamento dos arquivos (estrutura, nome, como acessar, usar etc.) através do sistema de arquivos. Enquanto o usuário final "enxerga" os arquivos através de seus nomes, localizações, tamanhos, tipos, proprietários etc., os projetistas dos sistemas de arquivos devem se preocupar também com aspectos mais técnicos, como por exemplo se vão ser utilizadas listas encadeadas ou mapa de bits para monitorar o espaço de armazenamento livre.

Mesmo lidando com sistemas de arquivos típicos do Windows (FAT32, NTFS etc.), os sistemas de arquivos nativos do Linux são, entre outros:

EXT (EXTended File System): durante algum tempo o EXT2 foi o sistema de arquivos padrão do Linux, herdando características de outros sistemas de arquivos e sendo baseado no UFS (usado no FreeBSD e Solaris), além de possuir semelhanças com os sistemas de arquivos HFS e HFS+ (Apple).

A menor unidade de alocação do Ext é o bloco (o equivalente ao *cluster* em sistemas de arquivos FAT e NTFS), cujos tamanhos possíveis são 1024, 2048 e 4096 (escolhido no processo de formatação).

Quando falamos especificamente da família de sistemas de arquivos EXT, temos que ter em mente que a versão 2 não possuía *journaling*. Somente na versão 3 surgiu! Em seguida vamos ver mais detalhes.

A principal característica do EXT3 é o uso do recurso de *journaling*, onde o sistema de arquivos mantém um *journal* (diário) das alterações realizadas. Esse "diário" armazena uma lista das alterações realizadas, permitindo que o sistema de arquivos seja reparado de forma muito rápida após o desligamento incorreto. O Ext3 possui três modos de operação:

- ordered (default): o journal é atualizado no final de cada operação. Isso faz com que exista uma pequena perda de desempenho, já que a cabeça de leitura do HD precisa realizar duas operações de gravação, uma no arquivo que foi alterado e outra no journal (que é um arquivo especialmente formatado);
- writeback: o journal armazena apenas informações referentes à estrutura do sistema de arquivos (metadados) e não em relação aos arquivos propriamente ditos, é gravado de forma mais ocasional, aproveitando os momentos de inatividade.
- journal: é o mais seguro, todavia mais lento. Nesse modo, o journal armazena não apenas informações sobre as alterações, mas também uma cópia de segurança de todos os arquivos modificados, que ainda não foram gravados no disco. Por ser o mais lento, é o modo menos usado.

Para finalizar a família EXT, existe o EXT4, com melhorias que incluem, por exemplo, a ampliação do endereçamento para 48 bits, o que permite endereçar um volume virtualmente ilimitado de blocos e partições de até 1 exabyte (1 EB = 1024 petabytes)! O limite de 2 TB para os arquivos também foi removido, abrindo espaço para o armazenamento de arquivos gigantescos (no máximo 1 EB, o mesmo tamanho do volume!).

Além do EXT2, EXT3, EXT4, existem outros sistemas de arquivos conhecidos (e cobrados em provas de concurso), a saber:

- BTRFS (B-tree File System);
- XFS: criado pela Silicon Graphics, suportado pelo Linux desde 2014;
- ReiserFS: primeiro a suportar journaling (antes do EXT3, por exemplo);
- JFS (Journaled File System).

ESTRUTURA DOS DIRETÓRIOS

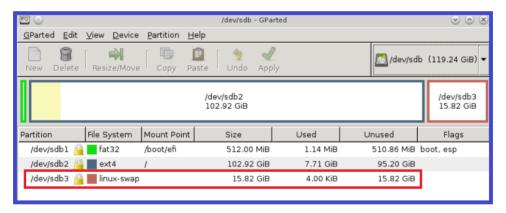
Uma característica forte do Linux é a sua estrutura de diretórios, que pode possuir pequenas modificações entre as distribuições, porém são semelhantes. Abaixo é mostrada tal estrutura e o que é armazenado, por padrão, em cada diretório/subdiretório:

- "/etc": dados de configuração (scripts de inicialização, tabela de sistemas de arquivo, configurações de login, configuração da fila de impressão, entre outros);
- "/etc/network/interfaces": configuração de rede (IP fixo ou DHCP, entre outros);
- "/etc/resolv.conf": servidores DNS;
- "/etc/ssh/sshd_config": configuração do SSH;
- "/usr": maior parte dos aplicativos e bibliotecas do sistema;
- "/usr/bin": executáveis dos programas;
- "/usr/lib": bibliotecas e arquivos compartilhados;
- "/usr/src": código-fonte de programas;
- "/usr/doc": documentação em geral;
- "/home": arquivos dos usuários (arquivos de trabalho, músicas, filmes, downloads, etc.);
- "/var": sites hospedados (nem sempre), bases de dados do MySQL, etc.;
- "/var/log": logs de diversos serviços;
- "/var/www": sites hospedados (nem sempre);
- "/boot": imagem do Kernel e o initrd (initial ram disk), carregados no início do boot;
- "/bin": comandos básicos, como "cd", "ls" e "cat";
- "/lib": módulos do Kernel e bibliotecas básicas do sistema;
- "/opt": arquivos de aplicativos adicionais, que não são essenciais para o sistema. Cada aplicativo tem uma subpasta com seu respectivo nome;
- "/proc": informações de depuração do Kernel, configurações que habilitam e desabilitam o suporte à algum elemento no Kernel;
- "/tmp": arquivos temporários.

MEMÓRIA VIRTUAL

O conceito de memória virtual está presente nos sistemas operacionais modernos (incluindo o Linux, claro). Sabemos que um programa necessita passar pela memória principal para ser executado, mas e se não há memória RAM suficiente para executar todo o programa? Aí surgiu a ideia de executar o programa em partes e apenas as partes que necessitam ser executadas no momento ficam na memória RAM.

9



A memória virtual é uma área de troca de dados que serve como uma extensão da memória RAM.

Por exemplo, se há 20 MB de memória RAM livre e um programa de 30 MB é executado, uma parte é carregada e o restante fica na memória virtual, para depois serem copiados para a memória principal a fim de serem executados.

Isso ocorre à medida que a execução do programa for acontecendo e o programa em questão (ou outros programas) liberarem a memória que ocupavam para o uso de outro programa. Podemos verificar que há um fluxo contínuo de dados entre o disco rígido (onde fica a memória virtual) e a memória RAM. Por isso concluímos que pouca memória RAM implica em usar muita memória virtual, que por sua vez, implica em usar muita leitura/escrita no disco rígido, deixando o funcionamento geral do sistema mais lento!

Geralmente ao instalar qualquer distribuição GNU/Linux, na opção automático da partição do disco onde será instalado o sistema, também encontramos a criação automática da partição Swap. Se optar por uma instalação personalizada, deve-se atentar para a criação de uma partição e marcá-la como Swap. Abaixo é mostrada uma partição Swap com cerca de 16 GB através do Gparted (utilitário que lista e permite alterar partições, bastante utilizado).

Quando não há partição livre ou não há espaço para a criação da memória virtual e o sistema operacional necessita de memória de troca para o melhor desempenho dos processos é possível criar o arquivo de memória Swap. Nada impede que ambas as soluções sejam utilizadas simultaneamente!

GERENCIADORES DE PACOTES

Segundo Morimoto, os pacotes são as "peças" que formam todas as distribuições Linux e podem conter programas, bibliotecas de sistema ou mesmo algumas outras "coisas" como papéis de parede e ícones. Alguns programas grandes (KDE, por exemplo) são divididos em vários pacotes para que o usuário possa instalar apenas as partes que interessam, ficando com um sistema mais enxuto.

Alguns pacotes dependem de outros (um programa pode precisar de uma biblioteca que faz parte de outro pacote, por exemplo), as chamadas dependências. Para evitar que algo não funcione ou com pacotes desnecessários, o instalador automaticamente verifica as dependências de cada pacote, adicionando ou removendo pacotes relacionados a ele. É por isso que às vezes ao marcar um determinado pacote alguns outros são marcados junto.

Instalar ou remover pacotes no Linux hoje em dia é muito fácil, pois existem vários gerenciadores de pacotes para facilitar essa tarefa. Vamos ver apenas quatro deles, pois são os geralmente cobrados em provas de concurso.

APT: resolve dependências para sistemas baseados em Debian (incluindo o Ubuntu). Possui uma sintaxe muito simples. Vamos a alguns exemplos para:

- atualizar os repositórios de software: sudo apt-get update ou sudo apt update (a lista com os repositórios devem estar no arquivo "/etc/apt/sources.list");
- atualizar seus pacotes já instalados (softwares): sudo apt-get upgrade ou sudo apt upgrade;
- uma atualização mais completa (tenta atualizar pacotes para a versão mais recente e remover dependências mais antigas ou não utilizadas): sudo apt-get dist-upgrade ou sudo apt full-upgrade;
- atualização dos repositórios e atualizar também os pacotes já instalados: sudo apt-get update && sudo apt-get upgrade ou sudo apt update && sudo apt upgrade;
- instalar um software: sudo apt-get install nome do pacote ou sudo apt install nome do pacote;
- remover um pacote: sudo apt-get remove nome do pacote ou sudo apt remove nome do pacote.

Ao remover um software do sistema usando o comando apt-get remove, o APT realiza todo o trabalho de remoção de dependências não utilizadas. Algumas dependências podem permanecer no sistema, então é só utilizar a opção autoremove: sudo apt-get autoremove ou sudo apt autoremove.

Para procurar um pacote a ser instalado, basta usar: sudo apt-cache search termo_pesquisa ou sudo apt search termo_pesquisa.

O APT atualmente não oferece a possibilidade de instalar um pacote de um *site*, ou seja, o usuário deve encontrar e baixar o pacote a ser instalado por conta própria, utilizando nesse caso o DPKG.

DPKG: criado para instalar pacotes ".deb" na distribuição Debian. Também é utilizado por outras distribuições, como Ubuntu, KNOPPIX etc. Os principais comandos utilizados pelo gerenciador de pacotes DPKG são dpkg e dpkg-reconfigure. A sintaxe é: dpkg [opções] nome pacote

Opções:

- -i: instalação simples.
- -r: desinstala o pacote exceto arquivos de configuração do pacote.
- -P: desinstala o pacote todos os arquivos do pacote.
- -l : exibe os pacotes que estão instalados.
- -p : exibe informações sobre o pacote instalado.
- -s : exibe o status do pacote.
- -I : exibe informações sobre pacotes não instalados.
- -S: exibe o pacote do qual o arquivo faz parte.

- -L : exibe os arquivos que fazem parte de um pacote instalado.
- -c : exibe os arquivos que fazem parte de um pacote não instalado.
- --help: exibe uma mensagem de ajuda.

Alguns exemplos:

- Instalação de um pacote: # dpkg -i pacote.deb
- Desinstalação de um pacote, mantendo os seus arquivos de configuração: # dpkg -r pacote
- Desinstalação de um pacote, inclusive os seus arquivos de configuração: # dpkg -P pacote
- Exibição de informações do pacote não instalado: # dpkg -l pacote.deb

Em relação ao comando dpkg-reconfigure: reconfigura pacotes ".deb" após terem sido instalados utilizando o debconf (sistema de configuração de pacotes ".deb"). Esse comando fará perguntas para reconfigurar o pacote.

Sintaxe: dpkg-reconfigure opções nome pacote

Opções:

-a ou --all :: reconfigura todos os pacotes

-h ou --help :: exibe ajuda

Exemplo: Reconfigura o pacote ssh \rightarrow # dpkg-reconfigure ssh

RPM: criado pela Red Hat para instalar pacotes ".rpm", sendo utilizado por várias distribuições, como Red Hat Enterprise/Fedora Core, Mandriva, SuSe, entre outras. O principal comando do gerenciador de pacotes RPM, é o rpm.

Sintaxe: rpm [opções] nome pacote

Algumas opções:

- -i: instalação simples.
- -v: exibe detalhes da instalação.
- -h: mostra o caractere "#", enquanto o programa é instalado.
- -U: atualização do programa de uma versão anterior para uma mais recente.
- --nodeps: não procura dependências.
- --force: força a instalação.
- --root diretório: utiliza o sistema com raiz em diretório para todas as operações.
- -e: desinstala o pacote.

- --import: importa a chave pública GPG do distribuidor de um pacote.
- --help: exibe uma mensagem de ajuda.
- -q: consulta (query) se um pacote já está instalado.

Exemplos:

#rpm -q httpd → Consulta se o pacote está instalado.

rpm -ivh tree.i386.rpm -> Instala o pacote, exibindo detalhes da instalação e mostra o caractere "#", enquanto o programa é instalado.

#rpm -e tree \rightarrow Desinstala o pacote tree.

YUM: resolve dependências de pacotes para distribuições que utilizam o RPM. É um gerenciador de pacotes padrão incluído em algumas distribuições baseados no REDHAT, incluindo o Fedora e CentOS. Muito parecido com o APT, vejamos alguns comandos:

- Atualização dos repositórios do YUM: sudo yum update;
- Instalação de um pacote: sudo yum install nome_do_pacote;
- Remoção de um pacote: sudo yum remove nome do pacote;
- Busca de um pacote que será instalado: sudo yum search nome do pacote.

O YUM não inclui um comando autoremove para encontrar e remover dependências não utilizadas, mas incluei um recurso para a instalação de um pacote a partir de uma URL (função que não existe no APT):

sudo yum install \$url

CONFIGURAÇÃO DE SERVIÇOS OU FUNCIONALIDADES

Diversos serviços ou funcionalidades no Linux são configurados através de arquivos texto e alguns deles costumam ser cobrados em provas de concurso. Vamos a eles...

Segurança da senha do usuário: os arquivos que armazenam os dados dos usuários do Linux são o "/etc/passwd" e o "/etc/shadow". Cuidado! O passwd não armazena a senha, embora o nome sugira isso! Vamos ver o exemplo de uma linha de cada arquivo, relativo ao usuário "estrategia". Primeiro o arquivo passwd:

estrategia:x:1010:1010:Estrategia Concursos:/home/estrategia:/bin/bash

Separado por dois pontos, podemos identificar os seguintes campos:

- nome do usuário = "estrategia";
- "senha" do usuário (o "x" indica que a senha está armazenada no arquivo /etc/shadow);
- identificação do usuário (uid = 1010);
- identificação do grupo (gid = 1010);

- comentário sobre o usuário (geralmente o nome completo) = "Estrategia Concursos";
- diretório princial (home) do usuário = "/home/estrategia";
- shell utilizado, ao logar, pelo usuário = "/bin/bash".

Agora vamos ao arquivo shadow:

```
estrategia:$6$nAkc...CdbF:17355:0:99999:7:::
```

Separado por dois pontos, podemos identificar os seguintes campos:

- nome do usuário = "estrategia";
- hash da senha do usuário = "\$6\$nAkc...CdbF" (obs.: inserir os três pontos no meio porque esse campo é muito grande);
- última vez (em dias) que a senha foi modificada, desde 1 de janeiro de 1970 = 17355;
- depois de alterada a senha o usuário só poderá alter novamente depois de x dias = 0 (0 significa que está desabilitado);
- a partir do momento que o usuário altera a senha, é obrigado a alterá-la novamente depois de x dias = 99999;
- quantos dias antes do fim do prazo para alterar a senha, deve ser mostrado um alerta = 7.

Os outros dois campos estão vazios, mas significam: inativo (quanto tempo sua conta ficou inativa/desabilitada), expirada (quantos dias depois de 01/01/1970 que sua conta está desabilitada ou expirada).

Configuração de interfaces de rede: os programas ifup (habilita interfaces de rede) e ifdown (desabilita) se baseiam na configuração do arquivo "/etc/network/interfaces", o qual vamos ver um exemplo abaixo, com comentários.

```
auto lo  # configuração automática para lo iface lo inet loopback # lo é uma interface de loopback auto eth0  # configuração automática para eth0 allow-hotplug eth0  # ativa a interface eth0 (com o ifup) iface eth0 inet static address 192.168.100.1 netmask 255.255.255.0 network 192.168.100.0 broadcast 192.168.100.255 # a última linha faz com que ifup ative a eth0 com o endereço fixo 192.168.100.1/24
```

Para os próximos dois serviços, é muito difícil cobrar algo muito específico, basicamente as bancas cobram os nomes de arquivos, então vamos direto ao ponto.

DNS (Domain Name System): o serviço de resolução de nomes tem um arquivo de configuração, o "/etc/resolv.conf". Lembre que "resolv" está ligado a "resolver um nome", fica mais fácil de lembrar.

NFS (Network File System): o sistema de arquivos em rede utilizado pelo Linux utiliza um arquivo que controla quais diretórios o servidor NFS exporta, o "/etc/exports".

INTEROPERABILIDADE

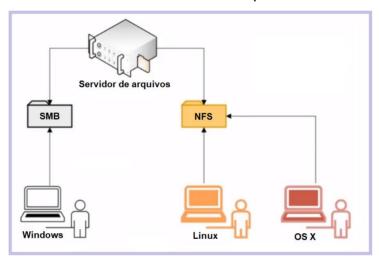
Quando falamos em sistemas de arquivos FAT, NTFS, EXT, XFS, entre outros, estamos falando em sistemas de arquivos "locais", os que permitem o acesso a uma mídia interna ou conectada a um computador, por exemplo. Existem também os sistemas de arquivos em rede, que dão a ilusão de um acesso local, porém o acesso é remoto. Os mais conhecidos são o NFS e o SMB/CIFS, os quais veremos a seguir.

O NFS (Network File System) é um protocolo de sistema de arquivos distribuído, originado no Unix, que permite que um usuário em um computador cliente acesse arquivos através de uma rede como se estivesse acessando na máquina local. O cliente NFS tem a finalidade de tornar o acesso remoto transparente para o usuário do computador, e esta interface cliente e servidor, executada pelo NFS através dos protocolos Cliente-Servidor, fica bem definida quando o usuário, ao chamar um arquivo/diretório no servidor, lhe parece estar acessando localmente, sendo que está trabalhando com arquivos remotamente.

Uma máquina Linux pode ser um servidor NFS e um cliente NFS, o que significa que pode exportar sistemas de arquivo para outros sistemas e montar sistemas de arquivo exportados de outras máquinas. Por exemplo, um grupo de usuários pode ter acesso aos arquivos de um determinado projeto usando um diretório compartilhado do sistema de arquivo NFS montado no diretório "/projeto". Para acessar os arquivos compartilhados, o usuário vai até o diretório "/projeto", sem senhas ou comandos especiais para lembrar. Dessa forma, os usuários trabalham como se o diretório estivesse em suas máquinas locais.

Algumas características do NFS são:

- Arquitetura cliente-servidor: o servidor recebe as requisições vindas do cliente, verifica a validade, executa e retorna ao cliente;
- Stateless (sem estado): considera cada requisição como uma transação independente que não está relacionada a qualquer requisição anterior, de forma que a comunicação consista de pares requisição/resposta independentes. Diante de uma falha no sistema, quando o servidor NFS volta a funcionar corretamente, o estado anterior é restaurado e o funcionamento continua como se não houvesse ocorrido nenhum problema;
- Caching: permite que as informações utilizadas mais recentemente sejam alocadas para posterior uso, ou pode carregar os dados em antecipação a operações futuras;
- File Locking (bloqueio de arquivo): permite que um processo tenha acesso exclusivo a um arquivo ou parte deste, e força outros processos que estão solicitando acesso ao mesmo arquivo, aguardarem a liberação;
- Utiliza o protocolo RPC (*Remote Procedure Call*): define um modo independente do sistema para processos se comunicarem através de uma rede de computadores, sendo que o cliente faz a chamada do procedimento remoto no servidor;



- Protocolo de transporte padrão é o UDP, no entanto, é possível utilizar o TCP;
- Compartilhar arquivos de um servidor NFS é conhecido como exportar os diretórios.

Para que os clientes possam acessar o servidor NFS é necessário que os seguintes *daemons* estejam em execução:

- nfsd: daemon NFS, atende requisições dos clientes NFS;
- mountd: daemon de montagem NFS, executa as solicitações passadas pelo nfsd;
- portmap: daemon portmapper, permite que clientes NFS descubram qual porta o servidor NFS está utilizando.

Na figura abaixo podemos ver o acesso a um servidor de arquivos através da rede. Note que máquinas Unix-like (ex.: Linux e OS X) utilizam o NFS como protocolo e as máquinas Windows utilizam o SMB/CIFS, que veremos o funcionamento na sequência.

Antes de começar a falar do protocolo em si, deixo bem claro que as questões de concurso já cobraram alguns detalhes do NFS, mas em relação ao SMB/CIFS a cobrança é superficial. Vamos lá...

O SMB/CIFS (Server Message Block/Common Internet File System) é um protocolo de redes cujo uso mais comum como é o compartilhamento de arquivos em uma rede local. Ele permite que o cliente manipule arquivos como se estes estivessem em sua máquina local (mesma coisa que o NFS, heim?). Algumas das operações suportadas são: leitura, escrita, criação, exclusão e renomeação, sendo que os arquivos/diretórios manipulados estão em um servidor remoto.

O protocolo SMB/CIFS funciona através do envio de pacotes do cliente para o servidor. O servidor recebe o pacote, verifica se a requisição é válida (se o cliente possui as permissões apropriadas), executa a requisição e retorna um pacote de resposta ao cliente. O cliente verifica o pacote de resposta para determinar se a requisição inicial obteve êxito. O protocolo mais utilizado para transporte confiável é o NetBIOS sobre TCP (NBT). Outros protocolos foram utilizados na camada de transporte, mas o NBT se tornou o mais utilizado.

O SMB/CIFS é muito utilizado pelos sistemas operacionais Windows, podendo funcionar como um servidor ou cliente. Isso não quer dizer que sistemas Unix-like não possuam também esse protocolo! Na verdade, a maioria dos sistemas Unix-Like (Linux, por exemplo) possuem uma implementação de

cliente/servidor do SMB/CIFS via Samba, que é um "software servidor" para Linux que permite o gerenciamento e compartilhamento de recursos em redes formadas por computadores com o Windows. Dessa forma é possível utilizar o Linux como servidor de arquivos, servidor de impressão, entre outros, como se a rede utilizasse servidores Windows (Server 200x, 201x, entre outros).

Resumindo: o Samba é um componente que realiza a comunicação entre servidores Linux e Windows, permitindo que eles compartilhem recursos de disco e de impressão. O daemon smbd possui dois modos de compartilhamento. O primeiro modo (sharemode) é mais simples, gerando uma senha para cada recurso que é compartilhado. O segundo modo (user) permite o compartilhamento de vários recursos com um único login e senha. Os privilégios de acesso aos recursos devem ser sempre mediados pelos administradores do sistema.

Um outro componente interessante do pacote Samba é o nmbd, um servidor de nomes NetBios (mais conhecido por WINS - Windows Internet Name Server) responsável por entender e responder solicitações de resoluções de nomes NetBios sobre IP. É ele o responsável pelo "aparecimento" do ícone do servidor Samba no ambiente de rede do Windows! Obs.: Se você não sabe o que é essa resolução de nomes, pense que é algo como o DNS, mas não de forma hierárquica, é uma resolução feita pelo Windows (sabendo isso já está bom para a prova \bigcirc).

SERVICO DE DIRETÓRIO

Um serviço de diretório é um sistema de software que armazena, organiza e fornece acesso a informações em um diretório do sistema operacional. Diretórios podem ser muito limitados em escopo, suportando apenas um pequeno conjunto de tipos de nós e tipos de dados, ou eles podem ser muito amplos, suportando um conjunto de tipos arbitrário ou extensível. No DNS os nós são nomes de domínio e os itens de dados são endereços IP (e apelidos, nomes de servidor de e-mail etc.).

Em um diretório utilizado por um sistema operacional de rede, os nós representam recursos que são gerenciados pelo sistema operacional, incluindo usuários, computadores, impressoras, entre outros recursos compartilhados. Muitos serviços de diretório têm sido utilizados desde o aparecimento da Internet, mas o mais utilizado é um descendente do serviço de diretório X.500.

Antes de vermos uma implementação de serviço de diretório para o Linux (OpenLDAP), é importante entendermos o protocolo que fornece mecanismos de acesso aos objetos, o LDAP (Lightweight Directory Access Protocol). Entidades internacionais (ITU, ISO, IETF, entre outras) trabalham na definição de padrões diversos, incluindo a padronização que dá suporte a serviços de diretórios. Um padrão de uso genérico é o X.500 (da ISO) que possui uma grande abrangência, mas é muito complexo e não foi adotado em sua íntegra como um padrão de mercado. Um padrão mais "light"

O padrão LDAP define um sistema de nomeação hierárquico, no qual é possível referenciar qualquer objeto que esteja no AD. Um nome LDAP é composto pelo caminho completo do objeto (ex.: uma impressora, um computador etc.), partindo do domínio raiz até chegar ao objeto em si. Algumas abreviaturas (atributos) são utilizadas nessa nomenclatura hierárquica:

- cn: common name (nome da conta de um usuário, grupo etc.);
- sn: sobrenome (surname);
- ou: faz referência a uma unidade organizacional;

que de fato se tornou um padrão de mercado foi o LDAP.

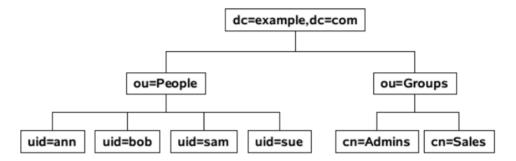
- dc: componente de domínio (normalmente o nome do domínio);
- o: nome da organização (geralmente o domínio raiz);
- c: country país (normalmente não utilizado).

Vamos a um exemplo de um nome LDAP:

CN=evandrodv, OU=professores, DC=ti, DC=estrategiaconcursos.com.br → esse nome representa o usuário "evandrodv", cuja conta está contida na unidade organizacional "professores", no domínio "ti.estrategiaconcursos.com.br". Obs.: os dois componentes de domínio foram concatenados.

Por padrão um servidor LDAP "escuta" na porta 389 (TCP) e as principais características do protocolo são:

- Baseado em padrão aberto: qualquer desenvolvedor pode acessar sua especificação e realizar a implementação;
- Possui APIs bem definidas: facilita a vida dos programadores;
- Maior velocidade de consulta que um BD relacional;
- Replicável e distribuível;
- Facilita a localização de informações e recursos: pesquisa feita nome.


Algumas operações (comandos) que podem ser utilizados através do LDAP são:

- Bind: autentica e especifica a versão do protocolo LDAP;
- Search: procura/recupera entradas dos diretórios;
- Compare: compara uma entrada com determinado valor;
- Add: adiciona uma nova entrada;
- Delete: exclui uma entrada;
- Modify: modifica uma entrada;
- Modify DN: move ou renomeia uma entrada;
- Abandon: aborta uma requisição prévia;

- Unbind: fecha a conexão:
- Extended Operation: operação genérica para definir outras operações;
- StartTLS: protege a conexão com o TLS implementada a partir da versão 3 do LDAP.

A representação dos dados é realizada através de uma estrutura hierárquica na forma de árvore (*Directory Information Tree* - DIT), a qual consiste em entradas de DNs (*Distinguished Names*). O LDAP utiliza a DIT como estrutura de dados fundamental:

Como podemos ver, a árvore de diretório possui uma forma hierárquica:

- Primeiro o diretório raiz:
- Após a rede corporativa, os departamentos e por fim os computadores dos usuários e os recursos de rede.

Alguns conceitos que também já foram cobrados em concursos são mostrados na sequência.

Schema: conjunto de objetos e atributos para o armazenamento. É modelado de acordo com o padrão X.500 da ISO.

Cada entrada (objeto) possui um identificador único (dn - distinguished name), o qual consiste de seu Relative Distinguished Name (RDN), construído de algum(ns) atributo(s) na entrada, seguido pelo DN da entrada pai.

Escalabilidade: é possível replicar servidores LDAP e incluir novos servidores à medida que aumenta a estrutura da organização. Ou seja, não é uma estrutura "engessada".

Como já mencionado anteriormente, uma solução bastante conhecida para Linux é o OpenLDAP (que também possui versões para Windows, Solaris, entre outros sistemas operacionais). Vamos ver como instalar o OpenLDAP:

sudo apt install slapd Idap-utils

O principal arquivo de configuração (pelo menos para concursos) é o "/etc/ldap.conf", que é usado para configurar os padrões a serem aplicados quando da execução dos clientes LDAP.

QUESTÕES COMENTADAS

1. (2016 - AOCP - EBSERH)

O NFS (Network File System) permite compartilhar sistemas de arquivos entre computadores conectados em rede e pode ser parte fundamental da infraestrutura da tecnologia da informação. Sobre NFS, analise as assertivas a seguir e assinale a alternativa que aponta a(s) correta(s).

- I. O NFS é considerado sem estado (stateless) e, portanto, quando um servidor NFS volta a funcionar, o estado anterior é restaurado e a informação não é perdida.
- II. O NFS pode ser implementado do lado servidor e do lado cliente.
- III. O NFS roda sobre o protocolo RPC (Remote Procedure Call), que define um modo independente do sistema para processos se comunicarem através de uma rede de computadores.
- IV. O NFS suporta apenas UDP como protocolo de transporte, pois ele apresenta desempenho significativamente melhor que o TCP em redes locais.
- A) Apenas I e II.
- B) Apenas II e IV.
- C) Apenas III.
- D) Apenas III e I.
- E) Apenas I, II e III.

Comentários:

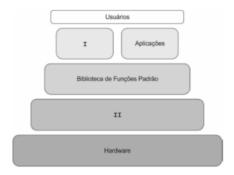
I. Exato! O NFS é *stateless*, cada requisição é uma transação independente que não está relacionada a qualquer requisição anterior. Então, quando um servidor NFS volta a funcionar, o estado anterior é restaurado e a informação não é perdida. (II) Existe quem faz requisições de acesso e manipulação de arquivos e diretórios (cliente) e quem recebe s requisições, avalia as permissões, executa e retorna (servidor). (III) O NFS utiliza o RPC (*Remote Procedure Call*), o cliente faz a chamada so servidor remoto (o servidor até pode estar na mesma máquina, mas o cenário mais comum é remoto). (IV) O protocolo padrão de transporte é o UDP, mas é possível optar pelo TCP.

Gabarito: E

2. (2017 - FGV - IBGE)

Em ambiente Linux, a chamada ao sistema (system call) que implementa a criação de um novo processo é:

- A) create process;
- B) new_process;


- C) fork;
- D) spawn;
- E) duplicate.

No Linux a chamada de sistema fork() faz uma "bifurcação" de um processo, sendo que o novo vira o filho do outro. Ex.: em um shell você executa algum comando, então o fork() será chamado, o shell será o processo pai do processo novo (o comando digitado).

Gabarito: C

3. (2017 - FCC - TRF-5^a Região)

Considere a figura abaixo que mostra a arquitetura do sistema operacional Linux

A caixa

- A) I representa a camada responsável pela interface entre o hardware e as aplicações. Dentre suas funções encontram-se gerenciamento de I/O, manutenção do sistema de arquivos, gerenciamento de memória e swapping, controle da fila de processos, etc.
- B) Il representa a camada que permite o acesso a recursos através da execução de chamadas feitas por processos. Tais chamadas são geradas por funções padrão suportadas pelo kernel. Dentre suas funções estão habilitar funções padrão como open, read, write e close e manter a comunicação entre as aplicações e o kernel.
- C) I é um processo que executa funções de leitura de comandos de entrada de um terminal, interpreta-os e gera novos processos, sempre que requisitados. É conhecido também como interpretador de comandos.
- D) Il é um processo que realiza modificações no shell, permitindo que funcionalidades do Linux sejam habilitadas ou desabilitadas, conforme a necessidade. Tal processo gera ganho de performance, pois à medida que customiza o shell, o usuário torna o Linux enxuto e adaptável.
- E) I é um processo que realiza modificações no kernel, permitindo que funcionalidades do Linux sejam habilitadas ou desabilitadas, conforme a necessidade. Tal processo gera ganho de performance, pois à medida que customiza o kernel, o usuário torna o Linux enxuto e adaptável.

A caixa I pode ser um *shell* que recebe comandos do teclado, interpreta e executa, gerando novos processos (filhos) através da chamada de sistema fork(). Ex.: execução do comando "Is" no *shell*.

Gabarito: C

4. (2017 - CS-UFG - DEMAE)

Na maior parte das distribuições Linux, a memória virtual é uma partição denominada

- A) EXT
- B) SWAP
- C) SETUP
- D) BIOS

Comentários:

Vimos que pode ser partição ou arquivo (ou até ambos), mas geralmente se utiliza uma partição de SWAP.

Gabarito: B

5. (2017 - Quadrix - COFECI)

Com relação à administração de sistemas Windows e Unix/Linux, julgue o item subsequente.

Não é possível realizar uma instalação automática, por meio de uma rede, no sistema operacional Linux.

Comentários:

Pode-se realizar uma instalação através de uma mídia (CD, DVD, pen drive) ou através da rede, desde que a placa de rede permita e a configuração esteja adequada para um *boot* pela rede.

Gabarito: Errado

6. (2017 - Colégio Pedro II - Colégio Pedro II)

Sistema operacional é um conjunto de programas básicos e utilitários que fazem seu computador funcionar. O Debian é um sistema operacional, em cujo núcleo está o Kernel, o programa mais fundamental no computador e que faz todas as operações mais básicas, permitindo que você execute os outros programas. O Debian atualmente usa o Kernel Linux. Mas um sistema operacional não funciona somente com o Kernel, são necessários utilitários e aplicativos. O Debian utiliza estas ferramentas do projeto GNU. Por esse motivo, muitos utilizadores defendem que devemos chamar o sistema de "Debian GNU/Linux". Reconheça (1) o gerenciador de pacotes (programas) usado no Debian e em distribuições derivadas do Debian (Ubuntu, Knoppix, Big Linux etc.) que utiliza uma lista

de dependências para instalar tudo o mais automaticamente possível, e (2) o arquivo de configuração utilizado por este gerenciador de pacote.

- A) Gerenciador (1) apt-get
 - Arquivo (2) source.list
- B) Gerenciador (1) apt-get
 - Arquivo (2) package.cfg
- C) Gerenciador (1) make install
 - Arquivo (2) package.cfg
- D) Gerenciador (1) dpkg
 - Arquivo (2) source.list

Comentários:

Das alternativas mostradas, apenas "apt-get" é um gerenciador que utiliza uma lista de dependências e o nome dela é "sources.list". Nas alternativas aparece com um "s" a menos, mas tudo bem, relaxe...

Gabarito: A

7. (2018 - CESPE - EMAP)

O kernel do sistema operacional Linux tem a função de interpretar os comandos executados em um terminal.

Comentários:

Quem tem essa função é o shell! O kernel é o núcleo do sistema operacional!

Gabarito: Errado

8. (2018 - FGV - MPE-AL)

Instalar, atualizar e remover pacotes no sistema operacional CentOS 7 é uma tarefa frequente para desenvolvedores de sistemas. Por isso, eventualmente podem ocorrer dúvidas sobre se determinado pacote está instalado ou qual é a versão que está sendo utilizada. Para dirimir essas dúvidas, sobre o pacote httpd devemos utilizar o comando

- A) rpm -q httpd
- B) yum check httpd
- C) apt-get find httpd
- D) find -iname httpd
- E) crontab -I httpd

Para quem não lembra da parte da aula sobre o gerenciador utilizado no CentOS, pelo menos deve lembrar que a resposta só pode ser uma das 3 primeiras, certo? Senão, a coisa tá feia...

Se também lembrar que "-q" é em relação a "query" (pesquisa), aí fica mais tranquilo para marcar a alternativa A.

Gabarito: A

9. (2018 - FGV - COMPESA)

Com relação às características e tarefas de administração do sistema operacional Linux, analise as afirmativas a seguir.

- I. O esquema de partição GPT (Guid Partition Table) oferece a possibilidade de até 128 partições primárias, com tamanhos maiores do que 2TB cada.
- II. Ext4, XFS e exFAT são exemplos de sistemas de arquivo com jornal, utilizados pelo Linux.
- III. A área de swap no Linux pode ser uma partição dedicada de swap, um arquivo de swap ou uma combinação de arquivos e partições de swap.

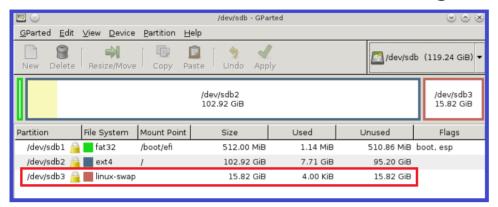
Está correto o que se afirma em

- A) I, somente.
- B) II, somente.
- C) III, somente.
- D) I e III, somente.
- E) I, II e III.

Comentários:

(I) Ao contrário da MBR, que oferece 4, a GPT realmente permite até 128, está correta! (II) exFAT é um sistema de arquivos do Windows, não do Linux! (III) Embora muitos pensem que tem que ser uma partição, pode ser um arquivo de swap ou ainda uma combinação.

Gabarito: D


10.(2018 - CS-UFG - SANEAGO-GO)

Um utilitário GNU, presente em diversos sistemas operacionais linux, que lista as partições dos discos rígidos, é:

- A) fsdisk.
- B) mcdisk.
- C) parted.
- D) gedit.

Na verdade é GParted, mas tudo bem...releve uma letrinha 😊

Gabarito: C

11.(2018 - IF-RS - IF-RS)

São tipos de sistemas de arquivos utilizados no Linux:

- A) FAT 16, FAT 32, NTFS
- B) FAT 32, HFS, ExFAT
- C) Ext2, Ext3, Btrfs
- D) Ext2, Ext3, HFS
- E) Ext2, Ext3, NFS, SMB

Comentários:

Família FAT e NTFS= Windows.

HFS = Apple.

NFS e SMB = Sistemas de arquivos de rede.

Só sobrou a letra C! Lembrando: família EXT, BtrFS, XFS, JFS, ReiserFS, entre outros = Linux!

Gabarito: C

12.(2018 - COPESE-UFT - UFT)

Embora seja possível realizar boot de um sistema Linux a partir de um pendrive, a maioria das instalações do Linux o realiza a partir do disco rígido do computador. Esse processo consiste em duas fases básicas:

1. Executar o carregador de boot a partir do dispositivo de boot; 2. Iniciar o kernel do Linux e iniciar os processos.

Assinale a alternativa que contém um gerenciador de boot para sistemas Linux:

- A) CISC (Complex Instruction Set Computer).
- B) GRUB (Grand Unifield Bootloader).
- C) ORM (Object Relational Mapping).
- D) CMS (Content Management System).

O LILO já foi bastante utilizado (mas nem aparece como opção) e o GRUB é mais utilizado ultimamente.

Gabarito: B

13.(2018 - COPESE-UFT - UFT)

Sistemas operacionais Linux permitem logins simultâneos de diferentes usuários. Assinale a alternativa que contém o comando a ser utilizado para visualizar os usuários logados em um determinado instante.

- A) listusers
- B) Idconfig
- C) who
- D) uname

Comentários:

O Linux é um sistema operacional multiusuário, ou seja, pode ter N usuários logados ao mesmo tempo. Para saber QUEM está logado pode ser utilizado o comando "who".

Gabarito: C

14.(2018 - IF-RS - IF-RS)

Considerando que se está logado como "root" no terminal de uma estação de trabalho com um sistema operacional Linux debian ou derivado, qual comando configura o DNS para 8.8.8.8?

- A) dns 8.8.8.8
- B) echo 8.8.8.8 > /etc/hosts.conf
- C) echo nameserver 8.8.8.8 > /etc/resolv.conf
- D) nslookup 8.8.8.8
- E) nameserver 8.8.8.8

Comentários:

Lembrando...o DNS resolve nomes, então o arquivo de configuração é o "resolv.conf" e sabemos que os arquivos de configuração por padrão ficam em "/etc". Só tem uma opção...a letra C.

Mas, continuando...o comando echo "escreve", então o comando completo "escreveu" "nameserver 8.8.8.8" no arquivo "/etc/resolv.conf", ou seja, configurou o serviço de DNS.

Gabarito: C

15.(2018 - COPEVE-UFAL - UFAL)

O assistente de tecnologia da informação precisa atualizar o sistema operacional GNU/Linux do servidor WEB de uma empresa. Qual comando, usando o modo root, deve ser utilizado?

- A) upgrade distro-all.
- B) upgrade apt-distro.
- C) apt-get dist-upgrade.
- D) apt-get purge "nome da distro".
- E) apt-cache showpkg "nome da distro".

Comentários:

Sabemos que o gerenciador de pacotes é o APT, já descartamos as duas primeiras. Mesmo sem lembrar da aula, dá para ver que pela lógica a letra C indica um upgrade da distribuição Linux.

Gabarito: C

16.(2018 - COPEVE-UFAL - UFAL)

Dadas as afirmativas quanto aos conceitos de Kernel no sistema operacional GNU/Linux,

- I. Compilar o Kernel permite ao usuário remover drivers inúteis diminuindo o tempo de arranque do sistema operacional.
- II. Os módulos do Kernel do sistema estão armazenados no diretório /boot/.
- III. O comando uname -a exibe as informações do kernel do sistema.
- IV. Módulos são as partes do kernel que são carregadas somente quando são requisitadas por um aplicativo ou dispositivo.

Verifica-se que está(ão) correta(s)

- A) II, apenas.
- B) I e II, apenas.
- C) III e IV, apenas.
- D) I, III e IV, apenas.
- E) I, II, III e IV.

(I) Compilar o *kernel* permite eliminar algo inútil ou acrescentar algo útil (ex.: um driver de uma placa de rede que você possui e não tinha antes). (II) Não! Ficam em "/lib/modules/versão_do_kernel". (III) Exato! Conforme tela abaixo, com destaque na versão do kernel. (IV) Perfeito! Assim não carrega o que não precisa para a memória!

```
[root@localhost lib]# uname -a
Linux localhost 4.12.0-rc6-g48ec1f0-dirty #21 Fri Aug 4 21:02:28 CEST 2017 i586
GNU/Linux
[root@localhost lib]#
```

Gabarito: D

17.(2018 - FGV - AL-RO)

Wallace é administrador de um servidor com sistema operacional CentOS e deseja compartilhar um diretório com os integrantes da empresa por meio do protocolo NFS.

Para que a configuração desse compartilhamento possa ser efetuada, Wallace deve editar o arquivo /etc/

- A) services
- B) modules
- C) hosts
- D) export
- E) fstab

Comentários:

O Linux geralmente é intuitivo, então digamos que você tenha esquecido da aula...mas lembra que o NFS é um sistema de arquivos de rede e os diretórios a serem "exportados" devem estar listados no arquivo "export".

Gabarito: D

18.(2018 - COPEVE-UFAL - UFAL)

Analise a configuração de rede no GNU/Linux.

```
auto lo
iface lo inet loopback
auto eth0
allow-hotplug eth0
iface eth0 inet static address 192.168.100.1 netmask 255.255.255.0
network 192.168.100.0 broadcast 192.168.100.255
```


Dadas as afirmativas quanto à configuração de rede,

- I. O "iface eth0 inet static" informa ao sistema que a placa de rede terá o endereço IP estático.
- II. O "iface lo" informa ao sistema que a placa de rede receberá um endereço IP via servidor DHCP.
- III. Uma segunda placa de rede com fio instalada nesse computador irá receber a denominação eth1.
- IV. O "allow-hotplug" permite conectar dispositivos hotplug no computador.

verifica-se que está(ão) correta(s)

- A) II, apenas.
- B) I e III, apenas.
- C) II e IV, apenas.
- D) I, III e IV, apenas.
- E) I, II, III e IV.

Comentários:

(I) O "iface eth0 inet static" informa ao sistema que a placa de rede terá o endereço IP estático, ou seja, não receberá um endereço através do protocolo DHCP. (II) O "iface lo" indica a interface de loopback (aquela para testes, geralmente o endereço IP é 127.0.0.1). (III) Uma segunda placa de rede com fio instalada nesse computador irá receber a denominação eth1, pois eth indica "ethernet" e já existe a eth0. (IV) O "allow-hotplug" permite conectar dispositivos hotplug no computador ("allow" = permite, então ficou tranquila essa).

Gabarito: D

19.(2018 - FGV - AL-RO)

Roberto trabalha como administrador de redes em uma empresa de cosméticos e sua principal função é a configuração de estações de trabalho dos seus colaboradores. Rotineiramente, Roberto instala e remove pacotes nas estações de trabalho às quais ele dá suporte.

Assinale a opção que indica o comando utilizado por Roberto para desinstalar pacotes RPM nas estações de trabalho com sistema operacional Linux CentOS.

- A) rpm –Uvh pacote
- B) rpm -e pacote
- C) rpm -ivh pacote
- D) rpm -qi pacote
- E) rpm -qa | grep pacote

Comentários:

Algumas opções do rpm:

-i: instalação simples.

- -v: exibe detalhes da instalação.
- -h: mostra o caractere "#", enquanto o programa é instalado.
- -U: atualização do programa de uma versão anterior para uma mais recente.
- --nodeps: não procura dependências.
- --force: força a instalação.
- --root diretório: utiliza o sistema com raiz em diretório para todas as operações.
- -e: desinstala o pacote.
- --import: importa a chave pública GPG do distribuidor de um pacote.
- --help: exibe uma mensagem de ajuda.
- -q: consulta (query) se um pacote já está instalado.

Gabarito: B

20.(2018 - Quadrix - CFBio)

Carregamento e inicialização do kernel e execução dos scripts de inicialização do sistema são algumas das etapas do processo de inicialização de um Linux típico.

Comentários:

Questão redonda, pois o núcleo do S.O. (Linux) deve ser carregado, depois os scripts de inicialização definidos pelo usuário (ou om a configuração padrão mesmo).

Gabarito: Certo

21.(2018 - Quadrix - CRM-PR)

Um computador pessoal com sistema operacional Linux, versão desktop, pode ter no máximo cinco usuários simultâneos.

Comentários:

Só teria o limite de 5 se fosse configurado previamente, mas por padrão não tem limite - até estourar a memória! \bigcirc

Gabarito: Errado

22.(2018 - FADESP - IF-PA)

Sobre os pacotes do Sistema Operacional (SO) Debian 9.5, é correto afirmar que

A) o apt é um programa que pode substituir o dpkg para o gerenciamento de pacotes do SO.

- B) os pacotes devem ser distribuídos no formato .tar.gz.
- C) o dpkg-source compila e executa código fonte de um pacote.
- D) um pacote marcado como Essential não pode ser desinstalado do Sistema Operacional.
- E) cada pacote deve especificar as dependências sobre outros pacotes para seu funcionamento.

É comum que para uma aplicação funcione ela precise de alguns pacotes, porque alguns dependem de outros. Os gerenciadores de pacotes ajudam a verificar essas dependências.

Gabarito: E

23.(2018 - CONSULPAM - Câmara de Juiz de Fora-MG)

Em relação ao Sistema Operacional Linux, marque o item INCORRETO:

- A) Sua arquitetura é composta por um núcleo monolítico cujas funções são: gerenciar a memória, operar as entradas e saídas e o acesso aos arquivos.
- B) Outra característica do Linux é com relação aos drivers de dispositivos e suporte a rede, os quais podem ser compactadas e utilizadas como se fossem módulos ou bibliotecas (LKM em inglês Loadable Kernel Modules), separados pela parte principal, cujo carregamento pode ser ativado após a execução do núcleo.
- C) No quesito portabilidade, o Linux funciona com eficiência em plataformas como x64 da Intel (EM64T e AMD64) PowerPC, Alpha, SPARC, porém é de difícil instalação nos sistemas embarcados como PVR, celulares, Tv's e Handhelds.
- D) A partir da década de 90, ao passo que a distribuição do Linux se popularizou, foi também limitada, pois se torna uma alternativa no uso de software livre, contra os sistemas operacionais da Apple (Mac OS) e Microsoft (Windows).

Comentários:

Em relação à portabilidade, o Linux se sai muito bem! Ele não foi pensado para ser um sistema portátil, mas acabou indo nessa direção, tendo um dos núcleos de sistemas operacionais mais portáteis, sendo executado em sistemas desde o iPaq (um computador portátil) até o IBM S/390 (um mainframe). Na atualidade o Linux hoje funciona em dezenas de plataformas, desde mainframes até um relógio de pulso, passando por diversas arquiteturas: x86 (Intel, AMD), x86-64 (Intel EM64T, AMD64), ARM, PowerPC, Alpha, SPARC, entre outras, além de sistemas embarcados (handhelds, consoles de videogames, PVR – Personal Video Recorder, telefones celulares, TVs etc.).

Gabarito: C

24.(2018 - CESPE - FUB)

O Linux é um sistema operacional em que cada usuário consegue ter apenas um processo ativo por vez, processo esse que é iniciado automaticamente quando o sistema é carregado.

O Linux permite que vários processos sejam executados ao mesmo tempo (multitarefa), mesmo que haja apenas um processador na máquina. O sistema operacional faz o escalonamento dos processos no processador, dando a ilusão de um paralelismo (ocorre um pseudoparalelismo). O comando "ps", por exemplo, pode ser executado e você verá diversos processos em execução. Quando há a criação de um processo novo, ele passa a ser filho de outro e a chamada de sistema utilizada é a fork().

Gabarito: Errado

25.(2018 - COPESE - UFT)

O sistema operacional Linux é reconhecido por permitir diversos níveis de personalização, inclusive de suportar o uso de vários ambientes gráficos. Assinale a alternativa que NÃO constituiu uma interface gráfica usada no Linux

- A) Pantheon.
- B) XFCM.
- C) MATE Desktop.
- D) Cinnamon Desktop.

Comentários:

O servidor de janelas é um ambiente gráfico (que se parece bastante com o sistema operacional Windows), tornando possível que tarefas sejam executadas sem a digitação de comandos (mas o usuário pode abrir um shell dentro do ambiente gráfico, se quiser). Abaixo podemos ver dois exemplos, o Gnome (à esquerda) e o KDE (à direita). Além desses dois, outros exemplos são Pantheon, MATE, Cinnamon, XFCE, Deepin, entre outros.

Sacanagem foi colocar "XFCM" como alternativa. O correto seria "XFCE"!

Gabarito: B

26.(2018 - CCV-UFC - UFC)

De acordo com a linha do arquivo '/ etc / passwd' exibida abaixo, qual das seguintes afirmações é verdadeira?

jferreira:x:502:1000:Joao Ferreira:/home/jferreira:/bin/bash

- A) O usuário Joao Ferreira possui a senha 'x'.
- B) Shadow passwords (senhas ocultas) são utilizados no sistema.
- C) O usuário Joao Ferreira pertence ao grupo com groupID 502.
- D) Membros do groupID 502 podem ler o diretório /home/jferreira.
- E) O nome de usuário (username) 'jferreira' pertence ao grupo 'jferreira'.

O segundo campo seria a senha (antigamente até era), mas há um bom tempo o *hash* da senha é colocado no arquivo /etc/shadow e no lugar dela é colocado um "x". Ou seja, esse "x" indica que *shadow passwords* (senhas ocultas) são utilizados no sistema.

Gabarito: B

27.(2018 - Quadrix - CRM-PR)

É possível instalar, em um mesmo computador desktop, os sistemas operacionais Windows 7 e Linux, de forma independente.

Comentários:

É possível, sim! Cada um em uma partição e um gerenciador de partição é utilizado para criar um menu e mostrá-lo quando você liga a máquina. Um exemplo clássico é o GRUB.

Gabarito: Certo

28.(2018 - Quadrix - CRM-PR)

O usuário root do sistema Linux tem autonomia para acessar arquivos de outros usuários, com exceção dos usuários administradores.

Comentários:

Root pode tudo! Até mesmo acessar os arquivos de outros usuários administradores!

Gabarito: Errado

20.	72010		TDE	CANI		CDE	CD)
Z9.((2018	-	IDE	CAN	-	CKF-	3P)

"O arquivo ______ só é legível pelo superusuário e serve para manter senhas criptografadas protegidas contra o acesso não autorizado. Ele também fornece informações sobre contas que não são disponíveis em ______." Assinale a alternativa que completa correta e sequencialmente a afirmativa sobre o Sistema Operacional Linux.

A) /etc/passwd; /etc/group

B) /etc/group; /etc/passwd

C) /etc/passwd; etc/shadow

D) /etc/shadow; /etc/passwd

Comentários:

Lembre-se que no /etc/passwd é possível verificar alguns dados do usuário (menos a senha, tem um "x" em seu lugar). No /etc/shadow tem o *hash* da senha, além de outras informações (expiração da senha, entre outras).

Gabarito: D

30.(2018 - UERR - IPERON)

Um administrador de uma rede baseada em Linux deseja guardar no servidor os scripts especiais para iniciar ou interromper módulos e programas diversos. Para isso, ele precisa guardar essas informações dentro do diretório:

- A) /srv
- B) /opl
- C) /etc
- D) /lib
- E) home

Comentários:

A gente pensa que "etc" significa "etcetera", mas o diretório quer dizer "enviroment tables and controls", então os arquivos de configuração geralmente se encontram em /etc.

Gabarito: C

31.(2018 - UERR - IPERON)

Em um computador com Linux, deseja-se instalar o sistema de arquivos ext3, mas com o nível de Journaling no qual se grava mudanças em arquivos de metadados, que força que a escrita do conteúdo dos arquivos seja feita após a marcação de seus metadados. Esse nível de Journaling é denominado:

- A) ordered
- B) cshell.
- C) iso9660
- D) journal.
- E) fsreiser.

Comentários:

O Ext3 possui três modos de operação:

- ordered (default): o journal é atualizado no final de cada operação. Isso faz com que exista uma pequena perda de desempenho, já que a cabeça de leitura do HD precisa realizar duas operações de gravação, uma no arquivo que foi alterado e outra no journal (que é um arquivo especialmente formatado);
- writeback: o journal armazena apenas informações referentes à estrutura do sistema de arquivos (metadados) e não em relação aos arquivos propriamente ditos, é gravado de forma mais ocasional, aproveitando os momentos de inatividade.

 journal: é o mais seguro, todavia mais lento. Nesse modo, o journal armazena não apenas informações sobre as alterações, mas também uma cópia de segurança de todos os arquivos modificados, que ainda não foram gravados no disco. Por ser o mais lento, é o modo menos usado.

Gabarito: A

32.(2019 - CS-UFG - IF Goiano)

Os sistemas Linux buscam padronizar diretórios para a localização de arquivos. Comandos essenciais do sistema operacional, tais como cat, tar, su, rm e pwd, em geral, estão localizados nos seguintes diretórios:

- A) /lib e /var
- B) /usr/lib e /lib
- C) /bin e /usr/bin
- D) /usr/bin e /var

Comentários:

Comandos são executáveis (binários), então, como sabemos que a estrutura de diretórios no Linux é organizada pelo tipo de informação, só nos resta a alternativa que possui "bin" duas vezes. Vejamos:

- "/usr/bin": executáveis dos programas;
- "/bin": comandos básicos, como "cd", "ls" e "cat".

Gabarito: C

33.(2019 - FCC - SEFAZ-BA)

Um Auditor Fiscal da área de Tecnologia da Informação deseja desinstalar um pacote chamado java-1.6.0- openjdk.x86_64 em linha de comando, como usuário root, no Red Hat Enterprise Linux 6. Para isso, terá que utilizar o comando

- A) apt-get uninstall java-1.6.0-openjdk.x86_64
- B) apt-get remove -rf java-1.6.0-openjdk.x86 64
- C) rm -rf java-1.6.0-openjdk.x86 64
- D) yum remove java-1.6.0-openjdk.x86_64
- E) apt-get -rf java-1.6.0-openjdk.x86 64

Comentários:

YUM: resolve dependências de pacotes para distribuições que utilizam o RPM. É um gerenciador de pacotes padrão incluído em algumas distribuições baseados no REDHAT, incluindo o Fedora e CentOS. Muito parecido com o APT, vejamos alguns comandos:

- Atualização dos repositórios do YUM: sudo yum update;
- Instalação de um pacote: sudo yum install nome do pacote;
- Remoção de um pacote: sudo yum remove nome do pacote;
- Busca de um pacote que será instalado: sudo yum search nome_do_pacote.

Gabarito: D

34.(2019 - IF-MS - IF-MS)

O sistema operacional Linux possui várias partições (áreas) em sua estrutura, cada uma com uma função definida. Assinale a alternativa que apresenta a partição que abriga a pasta raiz do sistema que contém arquivos essenciais ao seu pleno funcionamento:

- A) /boot
- B) /bin
- C) /
- D) /etc
- E) /root

Comentários:

No Linux o diretório raiz é representado por "/", enquanto no Windows é representado por "\".

Gabarito: C

35.(2019 - VUNESP - Câmara de Sertãozinho-SP)

Considere que o usuário de um computador com sistema operacional Linux deseja executar um comando em segundo plano (background) em um terminal Shell. Para efetivar essa ação, o usuário deve executar o comando

- A) e teclar a combinação Ctrl+c
- B) e teclar a combinação Ctrl+x
- C) seguido de bg
- D) seguido de &
- E) seguido de!

Comentários:

O mais utilizado para executar em background é utilizar "&" logo após o nome do binário ou script. Por exemplo, se você deseja executar um script "aprovacao.sh", que vai realizar vários cálculos e no fim escrever em um arquivo, não é necessário que você fique com o *shell* "travado", aguardando a conclusão da tarefa. Então é só digitar (note que o *shell* não fica esperando a conclusão do *script*, já aguarda o próximo comando):

estrategia:~\$ aprovacao.sh & estrategia:~\$

Gabarito: D

36.(2019 - COSEAC - UFF)

No Sistema Operacional Linux o diretório local padrão do superusuário é:

- A) /home.
- B) /usr.
- C) /root.
- D) /lib.
- E) /dev.

Comentários:

Os "usuários comuns" possuem como diretório local padrão "/home/nome_usr" (ex.: /home/evandro), enquanto o *root* possui como diretório local padrão o "/root".

Gabarito: C

37.(2019 - CESPE - SLU-DF)

Windows e Linux são classificados como sistemas operacionais de tempo real crítico, porque fornecem garantias absolutas de que todas as suas ações ocorrerão dentro de intervalos de tempo determinados.

Comentários:

Windows e Linux são sistemas operacionais interativos, pois recebem instruções por teclado, mouse, caneta ótica etc., realiza as tarefas, mostra os resultados via impressora, monitor de vídeo etc. Logo, há muita interação, o que é diferente de sistemas de tempo real ou ainda os sistemas de lote (são as 3 classificações relacionadas a esse assunto).

Gabarito: Errado

38.(2019 - INAZ do Pará - CORE-SP)

"Todos os arquivos e diretórios do sistema Linux instalado no computador partem de uma única origem: o diretório raiz. Mesmo que estejam armazenados em outros dispositivos físicos."

Disponível em: https://canaltech.com.br/linux/entendendo-a-estrutura-de-diretorios-dolinux/. Acesso em: 13.12.2018

Qual pasta no sistema operacional LINUX tem a função de armazenar arquivos de dispositivos do sistema?

- A) /dev.
- B) /etc.
- C) /lib.
- D) /var.
- E) /proc.

Comentários:

Dispositivos em inglês são devices. Como Linux geralmente é intuitivo...a resposta é "/dev".

Gabarito: A

39.(2019 - INAZ do Pará - CORE-SP)

"O agendamento de tarefas é um recurso muito interessante para a administração de sistemas operacionais. É possível programar a execução de scripts de manutenção do sistema, disparar envio de newsletters, gerar relatórios de analises de logs, entre outros"

Disponível em: https://www.vivaolinux.com.br/dica/Agendamento-de-tarefas-no-Linux- (cron-e-at). Acesso em: 13.12.2018

Qual programa do sistema operacional LINUX executa tarefas de modo automático, em horários prédeterminados, e executa tarefas que não foram executadas, enquanto o sistema esteve desligado?

- A) Fcron.
- B) Cron.
- C) Anacron.
- D) Schedule.
- E) Crontab.

Comentários:

Para o agendamento de tarefas a aplicação mais conhecida é o Cron, que já existe há muito tempo e passou por muitos estágios de evolução. Porém, a maioria das suas implementações atuais (Vixie Cron, ISC Cron, BCron etc.) ainda se baseiam no pressuposto de que o sistema está em funcionamento de forma ininterrupta. Isso é um problema quando se utiliza a virtualização, quando os sistemas que operam sob demanda, sendo ligados e desligados conforme sua necessidade.

Uma implementação que resolveu esse problema foi a FCron.

Gabarito: A

40.(2019 - IDECAN - IF-PB)

O Debian, uma das distribuições do sistema operacional Linux, possui um conjunto de pastas com nome pré-estabelecidos. Essas pastas possuem significado específico para o sistema operacional, visando atender necessidades do mesmo. Assinale a alternativa que indica corretamente o nome da pasta que armazena arquivos referentes às instalações de programas não oficiais da distribuição do sistema operacional.

- A) /bin
- B) /lib
- C) /opt
- D) /var
- E) /proc

Comentários:

Programas não oficiais poderiam ser chamados de "opcionais" (optionals), então vamos usar a lógica de nomes do Linux... "/opt".

Gabarito: C

41.(2019 - UFRR - UFRR)

A respeito de diretórios no sistema operacional Linux, a estrutura é conhecida como árvore invertida, isto é, a raiz da árvore de diretórios é o topo. Qual é a representação do diretório raiz, e nome do usuário que possui privilégio para escrever neste diretório.

- A) (raiz) e usuário root
- B) \\ (raiz) e usuário administrador
- C) / (raiz) e usuário root
- D) [(raiz) e usuário administrador
- E)]/ (raiz) e usuário root

Comentários:

Quem está acostumado com Windows sabe que o diretório raiz é "\", mas no Linux é invertida: "/". No Windows o usuário que "pode tudo" é o "Administrador", enquanto no Linux é o "root".

Gabarito: C

42.(2019 - IF-ES - IF-ES)

O Network File System (NFS) – Sistemas de Arquivos em Rede – tem como um dos principais propósitos dar suporte a um sistema heterogêneo, no qual clientes e servidores estejam possivelmente executando sistemas operacionais e hardwares diferentes. Sobre o NFS, é CORRETO afirmar:

- A) O NFS utiliza dois protocolos cliente-servidor, em que o primeiro é responsável pela montagem e o segundo é para acesso de diretório e arquivos.
- B) O servidor tem total gerência sobre o ponto de montagem nos clientes.
- C) Os serviços NFS são implementados apenas nos servidores Linux.
- D) Como critério de segurança, os clientes não podem ter acesso aos atributos dos arquivos.
- E) O NFS faz uso de máquinas distintas para servidores e clientes, impossibilitando que a mesma máquina seja tanto cliente quanto servidor

Comentários:

Para que os clientes possam acessar o servidor NFS é necessário que os seguintes *daemons* estejam em execução:

- nfsd: daemon NFS, atende requisições dos clientes NFS;
- mountd: daemon de montagem NFS, executa as solicitações passadas pelo nfsd;
- portmap: daemon portmapper, permite que clientes NFS descubram qual porta o servidor NFS está utilizando.

Para essa questão, esqueça o *portmap*, pois só serve para descobrir a porta do servidor. Os outros dois *daemons* fazem o papel dos protocolos citados na alternativa A: um atente requisições dos clientes (acessos a diretórios e arquivos) e o outro faz a montagem.

Gabarito: A

43.(2019 - FCC - Prefeitura de Manaus-AM)

Em computador com sistema operacional Linux e o OpenLDAP instalado, o programador editou o arquivo Idap.conf para configurar

- A) a autenticação do servidor.
- B) a execução do serviço do LDAP.
- C) o banco de dados a ser utilizado.
- D) a geração de índices do banco de dados.
- E) o acesso dos clientes ao diretório.

Comentários:

O principal arquivo de configuração (pelo menos para concursos) é o "/etc/ldap.conf", que é usado para configurar os padrões a serem aplicados quando da execução dos clientes LDAP.

Gabarito: E

USUÁRIOS, GRUPOS, PERMISSÕES E CONTROLES DE ACESSO

Um novo usuário pode ser adicionado utilizando-se ferramentas, como adduser ou useradd. A partir desse momento o usuário criado é adicionado nos arquivos /etc/passwd e /etc/shadow. Os arquivos recebem um número UID referente à identificação do usuário (dono), GID referente ao seu grupo, entre outros dados. Porém, o usuário root, por questões de segurança, não dispõe de UID (ou melhor, recebe um id=0).

Os números UID e GID variam de 0 a 65535 (dependendo do sistema, o valor limite pode ser maior). No caso do usuário root, esses valores são sempre 0 (zero). Assim, para fazer com que um usuário tenha os mesmos privilégios que o root, é necessário que seu GID seja 0. Isso informa ao sistema que o usuário em questão é um superusuário.

Cada arquivo/diretório no Linux possui um conjunto de permissões de acesso e propriedades em três níveis: usuário dono do arquivo (U), grupo proprietário (G) e qualquer outro usuário que não se encaixe nos níveis anteriores (O).

Os tipos de permissão são:

- Read (r) Leitura: permissão para visualizar o conteúdo do arquivo;
- Write (w) Escrita: permissão para alterar o conteúdo do arquivo;
- eXecute (x) Execução: permissão para executar o arquivo.

Dessa forma definimos a seguinte ordem:

Existem também algumas permissões especiais:

- setuid: privilégio do dono e não de quem executou, ex.: passwd executado pelo evandro > privilégio de root, mas quem executou foi o usuário evandro!
- setgid: tem efeito tanto em arquivos como em diretórios. Para um arquivo, executa com privilégios do grupo do usuário dono. Para um diretório, o grupo dos arquivos criados dentro do diretório será o mesmo do diretório pai. Abaixo podemos notar um "s" no lugar do "x" do grupo. Isso demonstra que o setgid está com valor 1.

```
$ ls -ld teste
drwxrwsr-x. 2 egdoc egdoc 4096 Nov 1 17:25 teste
```

• sticky bit: quando usado em um diretório, todos os arquivos dentro dele poderão ser modificados somente por seus donos. Exemplo típico: "/tmp", um diretório temporário onde todos podem colocar arquivos, mas cada um pode modificar o seu. Abaixo podemos notar um "t" no lugar do "x" dos outros. Isso demonstra que o sticky bit está com valor 1.

```
$ ls -ld /tmp
drwxrwxrwt. 14 root root 300 Nov 1 16:48 /tmp
```

Vamos rever nossa figura do "UGO" com as permissões especiais:

Analisando apenas as permissões especiais, se o setuid estiver ativo temos 100 = 4 (em decimal). Se tivermos o setgid ativo, temos 010 = 2 e se o sticky bit estiver ativo, temos 001 = 1.

Para visualizar as permissões é comum utilizarmos o argumento "-l" no comando "ls", pois esse argumento lista arquivos com informações adicionais, incluindo colunas com as permissões, nome do usuário e grupo do dono:

```
[root@localhost etc]# ls -l teste
-rw-r--r-- 1 root root 6 Jul 22 18:43 teste
[root@localhost etc]#
```

Na figura acima podemos ver que se trata de um arquivo (o primeiro caractere é "-" = arquivo, se fosse diretório seria "d"). Depois vemos as permissões do Usuário (rw-), Grupo (r--) e Outros (r--). Não vemos permissões especiais.

Ok, e se eu quiser modificar as permissões depois de ter criado um arquivo? Aí temos o comando chmod. Vamos ver algumas formas de utilizá-lo:

chmod u=rwx, g=rx, o=x nome_arquivo → modifica as permissões do "nome_arquivo" para:

- usuário = completo (read, write, execute);
- grupo = leitura e execução (read, execute);
- outros = apenas execução (execute).

chmod 0751 /home/evandro/arquivo.txt → aqui temos um exemplo utilizando números em octal e temos a presença das permissões especiais (o primeiro número). Como o primeiro número é 0, fica fácil, pois em binário ficaria 000 (setuid = 0, setgid = 0, sticky bit = 0). Agora vamos ao UGO:

- usuário = 7 = 111 = completo (read, write, execute);
- grupo = 5 = 101 = leitura e execução (read, execute);
- outros = 1 = 001 = apenas execução (execute).

Acabamos de ver que os comandos acima são equivalentes em termos das permissões concedidas!

Um último exemplo:

chmod +x teste → dá a permissão de execução ao arquivo "teste", mas para quem? U? G? O? Como não está explícito para quem é, todos recebem o "+x". Veja abaixo antes e depois de aplicar o "chmod +x teste". Tem um "ls -l teste" antes e depois para podermos verificar que realmente tanto o usuário, como o grupo e os outros receberam a permissão de execução (x).

```
[root@localhost etc]# ls -l teste
-rw-r--r-- 1 root root 6 Jul 22 18:43 teste
[root@localhost etc]# chmod +x teste
[root@localhost etc]# ls -l teste
-rwxr-xr-x 1 root root 6 Jul 22 18:43 teste
[root@localhost etc]#
```

Agora vamos ver como modificar o dono ou o grupo.

Embora o comando chown signifique change owner, ele permite a alteração do dono ou do grupo do arquivo/diretório. A opção "-R" aplica a arquivos/diretórios recursivamente e "-c" mostra o resultado. Vamos ver uns exemplos a seguir (note que o prompt mudou para "#", o que indica que está executando como root, afinal tem que ser root para mudar um arquivo de dono ou de grupo).

chown -R evandro /teste

→ "evandro" virou dono da pasta /teste, de forma recursiva.

chown evandro:inf /teste

→ "/teste" passou a ter o dono "evandro" e o grupo "inf" (mudou os dois de uma vez!).

Por fim, um comando que altera apenas o grupo de um arquivo/diretório, o chgrp:

#chgrp -R inf /teste

→ Recursivamente, mudou o dono de grupo do diretório "/teste" para "inf".

QUESTÕES COMENTADAS

44.(2014 - FUNCAB - MDA)

No sistema operacional Linux, a criação de um grupo permite que um conjunto de usuários diferentes possua acesso a um mesmo arquivo. O comando do Linux que tem como objetivo alterar o grupo de um arquivo/diretório é o

- A) chown.
- B) chgroup.
- C) chset.
- D) chfile.
- E) chgrp.

Comentários:

Sabemos que o chown permite a alteração de usuário/grupo, mas a questão fala somente em grupo. Tem uma pegadinha na letra B, mas seguindo o padrão de 5 letras (chown), a resposta é "chgrp".

Gabarito: E

45.(2018 - FGV - Prefeitura de Niterói-RJ)

Pedro é o proprietário do arquivo header.txt em um sistema Linux e gostaria de assegurar que somente ele tivesse permissão de leitura, gravação e execução a este arquivo, enquanto que todos os demais usuários com acesso ao sistema tivessem somente a permissão de leitura.

Assinale a opção que indica o comando que pode ser usado para conseguir esse objetivo.

- A) chmod ug+r header.txt
- B) chmod 766 header.txt
- C) chmod 722 header.txt
- D) chmod +r header.txt
- E) chmod 744 header.txt

Comentários:

Vamos fazer na sequência o UGO (usuário, grupo, outros):

$$U = r w x = 111 \rightarrow 7$$

$$G = r - - = 100 \rightarrow 4$$

$$O = r - - = 100 \rightarrow 4$$

Gabarito: E

46.(2018 - FGV - MPE-AL)

Para definir o script /usr/local/bin/meuscript como executável no sistema operacional Linux, devemos usar o comando

- A) chmod og /usr/local/bin/meuscript
- B) chmod 000 /usr/local/bin/meuscript
- C) chmod +x /usr/local/bin/meuscript
- D) chmod ugo-x /usr/local/bin/meuscript
- E) chmod 666 /usr/local/bin/meuscript

Comentários:

A única que adiciona a execução "x" é a letra C. Como não especifica para "quem", todo o UGO recebe a permissão para a execução.

Na letra E, se transformarmos 666 em binário, temos: 110 110 110 = rw- rw- rw- (não tem "x" para ninguém!).

Gabarito: C

47.(2019 - IF-ES - IF-ES)

Os administradores de redes precisam entender com clareza sobre o gerenciamento de contas de usuários nos Sistemas Operacionais de Servidores Linux. Em relação ao sistema de contas Linux, analise as afirmativas abaixo:

- I O arquivo /etc/shadow serve para manter senhas criptografadas seguras quanto a acesso não autorizado.
- II Um novo usuário pode ser adicionado utilizando-se ferramentas, como adduser ou useradd.
- III Os usuários dos sistemas Linux recebem um número UID referente a sua identificação, porém o usuário root, por questões de segurança, não dispõe de UID.

É CORRETO o que se afirma em:

- A) I, II e III.
- B) I e II, apenas
- C) I e III, apenas.
- D) II e III, apenas.
- E) Nenhuma das afirmativas está correta.

Comentários:

(I) O arquivo /etc/shadow serve para manter o hash das senhas, entre outras informações relacionadas. (II) Um novo usuário pode ser adicionado utilizando-se ferramentas, como adduser ou useradd e automaticamente os dados serão acrescidos nos arquivos /etc/passwd e /etc/shadow. (III)

Os usuários dos sistemas Linux recebem um número UID referente a sua identificação. O root recebe o UID 0.

Gabarito: B

48.(2019 - CS-UFG - IF Goiano)

Na configuração do Sistema Linux, o comando chmod modifica as permissões de arquivos com respeito à execução, leitura e escrita. A expressão chmod 751 arq2 é equivalente a:

- A) chmod u=rx,g=rwx,o=x arq2
- B) chmod u=rx,g=rwx,o=r arq2
- C) chmod u=rwx,g=rx,o=x arq2
- D) chmod u=rwx,g=rx,o=r arq2

Comentários:

$$U = 7 = 111 = rwx$$

$$G = 5 = 101 = r-x$$

$$O = 1 = 001 = --x$$

Tirando os "tracinhos": u=rwx,g=rx,o=x

Gabarito: C

49.(2019 - CCV-UFC - UFC)

Qual dos itens abaixo contém o comando do sistema operacional Linux capaz de mudar o grupo de um arquivo ou diretório do sistema?

- A) df
- B) sed
- C) chown
- D) chmod
- E) passwd

Comentários:

Questão interessante porque não mostra o comando "chgrp". Mas sabemos que o chown permite a alteração de usuário/grupo, ou seja, é possível trocar o grupo também!

Gabarito: C

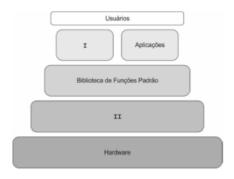
LISTA DE QUESTÕES

1. (2016 - AOCP - EBSERH)

O NFS (Network File System) permite compartilhar sistemas de arquivos entre computadores conectados em rede e pode ser parte fundamental da infraestrutura da tecnologia da informação. Sobre NFS, analise as assertivas a seguir e assinale a alternativa que aponta a(s) correta(s).

- I. O NFS é considerado sem estado (stateless) e, portanto, quando um servidor NFS volta a funcionar, o estado anterior é restaurado e a informação não é perdida.
- II. O NFS pode ser implementado do lado servidor e do lado cliente.
- III. O NFS roda sobre o protocolo RPC (Remote Procedure Call), que define um modo independente do sistema para processos se comunicarem através de uma rede de computadores.
- IV. O NFS suporta apenas UDP como protocolo de transporte, pois ele apresenta desempenho significativamente melhor que o TCP em redes locais.
- A) Apenas I e II.
- B) Apenas II e IV.
- C) Apenas III.
- D) Apenas III e I.
- E) Apenas I, II e III.

2. (2017 - FGV - IBGE)


Em ambiente Linux, a chamada ao sistema (system call) que implementa a criação de um novo processo é:

- A) create process;
- B) new process;
- C) fork;
- D) spawn;
- E) duplicate.

3. (2017 - FCC - TRF-5^a Região)

Considere a figura abaixo que mostra a arquitetura do sistema operacional Linux

A caixa

- A) I representa a camada responsável pela interface entre o hardware e as aplicações. Dentre suas funções encontram-se gerenciamento de I/O, manutenção do sistema de arquivos, gerenciamento de memória e swapping, controle da fila de processos, etc.
- B) Il representa a camada que permite o acesso a recursos através da execução de chamadas feitas por processos. Tais chamadas são geradas por funções padrão suportadas pelo kernel. Dentre suas funções estão habilitar funções padrão como open, read, write e close e manter a comunicação entre as aplicações e o kernel.
- C) I é um processo que executa funções de leitura de comandos de entrada de um terminal, interpreta-os e gera novos processos, sempre que requisitados. É conhecido também como interpretador de comandos.
- D) Il é um processo que realiza modificações no shell, permitindo que funcionalidades do Linux sejam habilitadas ou desabilitadas, conforme a necessidade. Tal processo gera ganho de performance, pois à medida que customiza o shell, o usuário torna o Linux enxuto e adaptável.
- E) I é um processo que realiza modificações no kernel, permitindo que funcionalidades do Linux sejam habilitadas ou desabilitadas, conforme a necessidade. Tal processo gera ganho de performance, pois à medida que customiza o kernel, o usuário torna o Linux enxuto e adaptável.

4. (2017 - CS-UFG - DEMAE)

Na maior parte das distribuições Linux, a memória virtual é uma partição denominada

- A) EXT
- B) SWAP
- C) SETUP
- D) BIOS

5. (2017 - Quadrix - COFECI)

Com relação à administração de sistemas Windows e Unix/Linux, julgue o item subsequente.

Não é possível realizar uma instalação automática, por meio de uma rede, no sistema operacional Linux.

6. (2017 - Colégio Pedro II - Colégio Pedro II)

Sistema operacional é um conjunto de programas básicos e utilitários que fazem seu computador funcionar. O Debian é um sistema operacional, em cujo núcleo está o Kernel, o programa mais fundamental no computador e que faz todas as operações mais básicas, permitindo que você execute os outros programas. O Debian atualmente usa o Kernel Linux. Mas um sistema operacional não funciona somente com o Kernel, são necessários utilitários e aplicativos. O Debian utiliza estas ferramentas do projeto GNU. Por esse motivo, muitos utilizadores defendem que devemos chamar o sistema de "Debian GNU/Linux". Reconheça (1) o gerenciador de pacotes (programas) usado no Debian e em distribuições derivadas do Debian (Ubuntu, Knoppix, Big Linux etc.) que utiliza uma lista de dependências para instalar tudo o mais automaticamente possível, e (2) o arquivo de configuração utilizado por este gerenciador de pacote.

A) Gerenciador (1) - apt-get

Arquivo (2) - source.list

B) Gerenciador (1) - apt-get

Arquivo (2) - package.cfg

C) Gerenciador (1) - make install

Arquivo (2) - package.cfg

D) Gerenciador (1) - dpkg

Arquivo (2) - source.list

7. (2018 - CESPE - EMAP)

O kernel do sistema operacional Linux tem a função de interpretar os comandos executados em um terminal.

8. (2018 - FGV - MPE-AL)

Instalar, atualizar e remover pacotes no sistema operacional CentOS 7 é uma tarefa frequente para desenvolvedores de sistemas. Por isso, eventualmente podem ocorrer dúvidas sobre se determinado pacote está instalado ou qual é a versão que está sendo utilizada. Para dirimir essas dúvidas, sobre o pacote httpd devemos utilizar o comando

A) rpm -q httpd

- B) yum check httpd
- C) apt-get find httpd
- D) find -iname httpd
- E) crontab -I httpd

9. (2018 - FGV - COMPESA)

Com relação às características e tarefas de administração do sistema operacional Linux, analise as afirmativas a seguir.

I. O esquema de partição GPT (Guid Partition Table) oferece a possibilidade de até 128 partições primárias, com tamanhos maiores do que 2TB cada. II. Ext4, XFS e exFAT são exemplos de sistemas de arquivo com jornal, utilizados pelo Linux. III. A área de swap no Linux pode ser uma partição dedicada de swap, um arquivo de swap ou uma combinação de arquivos e partições de swap.

Está correto o que se afirma em

- A) I, somente.
- B) II, somente.
- C) III, somente.
- D) I e III, somente.
- E) I, II e III.

10.(2018 - CS-UFG - SANEAGO-GO)

Um utilitário GNU, presente em diversos sistemas operacionais linux, que lista as partições dos discos rígidos, é:

- A) fsdisk.
- B) mcdisk.
- C) parted.
- D) gedit.

11.(2018 - IF-RS - IF-RS)

São tipos de sistemas de arquivos utilizados no Linux:

- A) FAT 16, FAT 32, NTFS
- B) FAT 32, HFS, ExFAT
- C) Ext2, Ext3, Btrfs
- D) Ext2, Ext3, HFS

E) Ext2, Ext3, NFS, SMB

12.(2018 - COPESE-UFT - UFT)

Embora seja possível realizar boot de um sistema Linux a partir de um pendrive, a maioria das instalações do Linux o realiza a partir do disco rígido do computador. Esse processo consiste em duas fases básicas:

1. Executar o carregador de boot a partir do dispositivo de boot; 2. Iniciar o kernel do Linux e iniciar os processos.

Assinale a alternativa que contém um gerenciador de boot para sistemas Linux:

- A) CISC (Complex Instruction Set Computer).
- B) GRUB (Grand Unifield Bootloader).
- C) ORM (Object Relational Mapping).
- D) CMS (Content Management System).

13.(2018 - COPESE-UFT - UFT)

Sistemas operacionais Linux permitem logins simultâneos de diferentes usuários. Assinale a alternativa que contém o comando a ser utilizado para visualizar os usuários logados em um determinado instante.

- A) listusers
- B) Idconfig
- C) who
- D) uname

14.(2018 - IF-RS - IF-RS)

Considerando que se está logado como "root" no terminal de uma estação de trabalho com um sistema operacional Linux debian ou derivado, qual comando configura o DNS para 8.8.8.8?

- A) dns 8.8.8.8
- B) echo 8.8.8.8 > /etc/hosts.conf
- C) echo nameserver 8.8.8.8 > /etc/resolv.conf
- D) nslookup 8.8.8.8
- E) nameserver 8.8.8.8

15.(2018 - COPEVE-UFAL - UFAL)

O assistente de tecnologia da informação precisa atualizar o sistema operacional GNU/Linux do servidor WEB de uma empresa. Qual comando, usando o modo root, deve ser utilizado?

- A) upgrade distro-all.
- B) upgrade apt-distro.
- C) apt-get dist-upgrade.
- D) apt-get purge "nome da distro".
- E) apt-cache showpkg "nome da distro".

16.(2018 - COPEVE-UFAL - UFAL)

Dadas as afirmativas quanto aos conceitos de Kernel no sistema operacional GNU/Linux,

- I. Compilar o Kernel permite ao usuário remover drivers inúteis diminuindo o tempo de arranque do sistema operacional.
- II. Os módulos do Kernel do sistema estão armazenados no diretório /boot/.
- III. O comando uname -a exibe as informações do kernel do sistema.
- IV. Módulos são as partes do kernel que são carregadas somente quando são requisitadas por um aplicativo ou dispositivo.

Verifica-se que está(ão) correta(s)

- A) II, apenas.
- B) I e II, apenas.
- C) III e IV, apenas.
- D) I, III e IV, apenas.
- E) I, II, III e IV.

17.(2018 - FGV - AL-RO)

Wallace é administrador de um servidor com sistema operacional CentOS e deseja compartilhar um diretório com os integrantes da empresa por meio do protocolo NFS.

Para que a configuração desse compartilhamento possa ser efetuada, Wallace deve editar o arquivo /etc/

- A) services
- B) modules
- C) hosts
- D) export

E) fstab

18.(2018 - COPEVE-UFAL - UFAL)

Analise a configuração de rede no GNU/Linux.

auto lo iface

lo inet loopback

auto eth0

allow-hotplug eth0

iface eth0

inet static address 192.168.100.1 netmask 255.255.255.0 network 192.168.100.0 broadcast 192.168.100.255

Dadas as afirmativas quanto à configuração de rede,

- I. O "iface eth0 inet static" informa ao sistema que a placa de rede terá o endereço IP estático.
- II. O "iface lo" informa ao sistema que a placa de rede receberá um endereço IP via servidor DHCP.
- III. Uma segunda placa de rede com fio instalada nesse computador irá receber a denominação eth1.
- IV. O "allow-hotplug" permite conectar dispositivos hotplug no computador.

verifica-se que está(ão) correta(s)

- A) II, apenas.
- B) I e III, apenas.
- C) II e IV, apenas.
- D) I, III e IV, apenas.
- E) I, II, III e IV.

19.(2018 - FGV - AL-RO)

Roberto trabalha como administrador de redes em uma empresa de cosméticos e sua principal função é a configuração de estações de trabalho dos seus colaboradores. Rotineiramente, Roberto instala e remove pacotes nas estações de trabalho às quais ele dá suporte.

Assinale a opção que indica o comando utilizado por Roberto para desinstalar pacotes RPM nas estações de trabalho com sistema operacional Linux CentOS.

- A) rpm –Uvh pacote
- B) rpm -e pacote
- C) rpm -ivh pacote
- D) rpm -qi pacote

E) rpm -qa | grep pacote

20.(2018 - Quadrix - CFBio)

Carregamento e inicialização do kernel e execução dos scripts de inicialização do sistema são algumas das etapas do processo de inicialização de um Linux típico.

21.(2018 - Quadrix - CRM-PR)

Um computador pessoal com sistema operacional Linux, versão desktop, pode ter no máximo cinco usuários simultâneos.

22.(2018 - FADESP - IF-PA)

Sobre os pacotes do Sistema Operacional (SO) Debian 9.5, é correto afirmar que

- A) o apt é um programa que pode substituir o dpkg para o gerenciamento de pacotes do SO.
- B) os pacotes devem ser distribuídos no formato .tar.gz.
- C) o dpkg-source compila e executa código fonte de um pacote.
- D) um pacote marcado como Essential não pode ser desinstalado do Sistema Operacional.
- E) cada pacote deve especificar as dependências sobre outros pacotes para seu funcionamento.

23.(2018 - CONSULPAM - Câmara de Juiz de Fora-MG)

Em relação ao Sistema Operacional Linux, marque o item INCORRETO:

- A) Sua arquitetura é composta por um núcleo monolítico cujas funções são: gerenciar a memória, operar as entradas e saídas e o acesso aos arquivos.
- B) Outra característica do Linux é com relação aos drivers de dispositivos e suporte a rede, os quais podem ser compactadas e utilizadas como se fossem módulos ou bibliotecas (LKM em inglês Loadable Kernel Modules), separados pela parte principal, cujo carregamento pode ser ativado após a execução do núcleo.
- C) No quesito portabilidade, o Linux funciona com eficiência em plataformas como x64 da Intel (EM64T e AMD64) PowerPC, Alpha, SPARC, porém é de difícil instalação nos sistemas embarcados como PVR, celulares, Tv's e Handhelds.
- D) A partir da década de 90, ao passo que a distribuição do Linux se popularizou, foi também limitada, pois se torna uma alternativa no uso de software livre, contra os sistemas operacionais da Apple (Mac OS) e Microsoft (Windows).

24.(2018 - CESPE - FUB)

O Linux é um sistema operacional em que cada usuário consegue ter apenas um processo ativo por vez, processo esse que é iniciado automaticamente quando o sistema é carregado.

25.(2018 - COPESE - UFT)

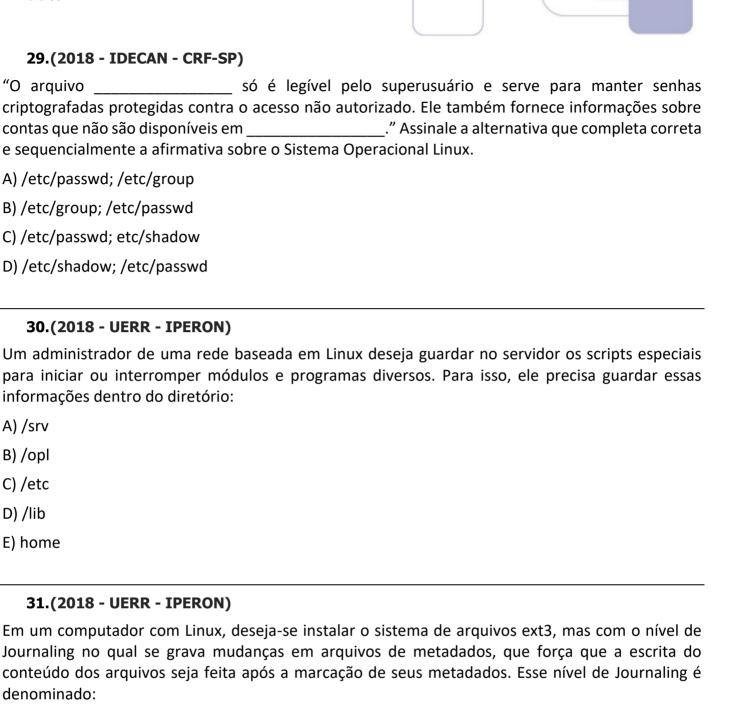
O sistema operacional Linux é reconhecido por permitir diversos níveis de personalização, inclusive de suportar o uso de vários ambientes gráficos. Assinale a alternativa que NÃO constituiu uma interface gráfica usada no Linux

- A) Pantheon.
- B) XFCM.
- C) MATE Desktop.
- D) Cinnamon Desktop.

26.(2018 - CCV-UFC - UFC)

De acordo com a linha do arquivo '/ etc / passwd' exibida abaixo, qual das seguintes afirmações é verdadeira?

jferreira:x:502:1000:Joao Ferreira:/home/jferreira:/bin/bash


- A) O usuário Joao Ferreira possui a senha 'x'.
- B) Shadow passwords (senhas ocultas) são utilizados no sistema.
- C) O usuário Joao Ferreira pertence ao grupo com groupID 502.
- D) Membros do groupID 502 podem ler o diretório /home/jferreira.
- E) O nome de usuário (username) 'jferreira' pertence ao grupo 'jferreira'.

27.(2018 - Quadrix - CRM-PR)

É possível instalar, em um mesmo computador desktop, os sistemas operacionais Windows 7 e Linux, de forma independente.

28.(2018 - Quadrix - CRM-PR)

O usuário root do sistema Linux tem autonomia para acessar arquivos de outros usuários, com exceção dos usuários administradores.

A) ordered

B) cshell.

C) iso9660

D) journal.

E) fsreiser.

32.(2019 - CS-UFG - IF Goiano)

Os sistemas Linux buscam padronizar diretórios para a localização de arquivos. Comandos essenciais do sistema operacional, tais como cat, tar, su, rm e pwd, em geral, estão localizados nos seguintes diretórios:

- A) /lib e /var
- B) /usr/lib e /lib
- C) /bin e /usr/bin
- D) /usr/bin e /var

33.(2019 - FCC - SEFAZ-BA)

Um Auditor Fiscal da área de Tecnologia da Informação deseja desinstalar um pacote chamado java-1.6.0- openjdk.x86_64 em linha de comando, como usuário root, no Red Hat Enterprise Linux 6. Para isso, terá que utilizar o comando

- A) apt-get uninstall java-1.6.0-openjdk.x86_64
- B) apt-get remove -rf java-1.6.0-openjdk.x86 64
- C) rm -rf java-1.6.0-openjdk.x86 64
- D) yum remove java-1.6.0-openjdk.x86 64
- E) apt-get -rf java-1.6.0-openjdk.x86_64

34.(2019 - IF-MS - IF-MS)

O sistema operacional Linux possui várias partições (áreas) em sua estrutura, cada uma com uma função definida. Assinale a alternativa que apresenta a partição que abriga a pasta raiz do sistema que contém arquivos essenciais ao seu pleno funcionamento:

- A) /boot
- B) /bin
- C) /
- D) /etc
- E) /root

35.(2019 - VUNESP - Câmara de Sertãozinho-SP)

Considere que o usuário de um computador com sistema operacional Linux deseja executar um comando em segundo plano (background) em um terminal Shell. Para efetivar essa ação, o usuário deve executar o comando

A) e teclar a combinação Ctrl+c

- B) e teclar a combinação Ctrl+x
- C) seguido de bg
- D) seguido de &
- E) seguido de!

36.(2019 - COSEAC - UFF)

No Sistema Operacional Linux o diretório local padrão do superusuário é:

- A) /home.
- B) /usr.
- C) /root.
- D) /lib.
- E) /dev.

37.(2019 - CESPE - SLU-DF)

Windows e Linux são classificados como sistemas operacionais de tempo real crítico, porque fornecem garantias absolutas de que todas as suas ações ocorrerão dentro de intervalos de tempo determinados.

38.(2019 - INAZ do Pará - CORE-SP)

"Todos os arquivos e diretórios do sistema Linux instalado no computador partem de uma única origem: o diretório raiz. Mesmo que estejam armazenados em outros dispositivos físicos."

Disponível em: https://canaltech.com.br/linux/entendendo-a-estrutura-de-diretorios-dolinux/. Acesso em: 13.12.2018

Qual pasta no sistema operacional LINUX tem a função de armazenar arquivos de dispositivos do sistema?

- A) /dev.
- B) /etc.
- C) /lib.
- D) /var.
- E) /proc.

39.(2019 - INAZ do Pará - CORE-SP)

"O agendamento de tarefas é um recurso muito interessante para a administração de sistemas operacionais. É possível programar a execução de scripts de manutenção do sistema, disparar envio de newsletters, gerar relatórios de analises de logs, entre outros"

Disponível em: https://www.vivaolinux.com.br/dica/Agendamento-de-tarefas-no-Linux- (cron-e-at). Acesso em: 13.12.2018

Qual programa do sistema operacional LINUX executa tarefas de modo automático, em horários prédeterminados, e executa tarefas que não foram executadas, enquanto o sistema esteve desligado?

- A) Fcron.
- B) Cron.
- C) Anacron.
- D) Schedule.
- E) Crontab.

40.(2019 - IDECAN - IF-PB)

O Debian, uma das distribuições do sistema operacional Linux, possui um conjunto de pastas com nome pré-estabelecidos. Essas pastas possuem significado específico para o sistema operacional, visando atender necessidades do mesmo. Assinale a alternativa que indica corretamente o nome da pasta que armazena arquivos referentes às instalações de programas não oficiais da distribuição do sistema operacional.

- A) /bin
- B) /lib
- C) /opt
- D) /var
- E) /proc

41.(2019 - UFRR - UFRR)

A respeito de diretórios no sistema operacional Linux, a estrutura é conhecida como árvore invertida, isto é a raiz da árvore de diretórios é o topo. Qual é a representação do diretório raiz, e nome do usuário que possui privilégio para escrever neste diretório.

- A) (raiz) e usuário root
- B) \\ (raiz) e usuário administrador
- C) / (raiz) e usuário root
- D) [(raiz) e usuário administrador

E)]/ (raiz) e usuário root

42.(2019 - IF-ES - IF-ES)

- O Network File System (NFS) Sistemas de Arquivos em Rede tem como um dos principais propósitos dar suporte a um sistema heterogêneo, no qual clientes e servidores estejam possivelmente executando sistemas operacionais e hardwares diferentes. Sobre o NFS, é CORRETO afirmar:
- A) O NFS utiliza dois protocolos cliente-servidor, em que o primeiro é responsável pela montagem e o segundo é para acesso de diretório e arquivos.
- B) O servidor tem total gerência sobre o ponto de montagem nos clientes.
- C) Os serviços NFS são implementados apenas nos servidores Linux.
- D) Como critério de segurança, os clientes não podem ter acesso aos atributos dos arquivos.
- E) O NFS faz uso de máquinas distintas para servidores e clientes, impossibilitando que a mesma máquina seja tanto cliente quanto servidor

43.(2019 - FCC - Prefeitura de Manaus-AM)

Em computador com sistema operacional Linux e o OpenLDAP instalado, o programador editou o arquivo Idap.conf para configurar

- A) a autenticação do servidor.
- B) a execução do serviço do LDAP.
- C) o banco de dados a ser utilizado.
- D) a geração de índices do banco de dados.
- E) o acesso dos clientes ao diretório.

44.(2014 - FUNCAB - MDA)

No sistema operacional Linux, a criação de um grupo permite que um conjunto de usuários diferentes possua acesso a um mesmo arquivo. O comando do Linux que tem como objetivo alterar o grupo de um arquivo/diretório é o

- A) chown.
- B) chgroup.
- C) chset.

- D) chfile.
- E) chgrp.

45.(2018 - FGV - Prefeitura de Niterói-RJ)

Pedro é o proprietário do arquivo header.txt em um sistema Linux e gostaria de assegurar que somente ele tivesse permissão de leitura, gravação e execução a este arquivo, enquanto que todos os demais usuários com acesso ao sistema tivessem somente a permissão de leitura.

Assinale a opção que indica o comando que pode ser usado para conseguir esse objetivo.

- A) chmod ug+r header.txt
- B) chmod 766 header.txt
- C) chmod 722 header.txt
- D) chmod +r header.txt
- E) chmod 744 header.txt

46.(2018 - FGV - MPE-AL)

Para definir o script /usr/local/bin/meuscript como executável no sistema operacional Linux, devemos usar o comando

- A) chmod og /usr/local/bin/meuscript
- B) chmod 000 /usr/local/bin/meuscript
- C) chmod +x /usr/local/bin/meuscript
- D) chmod ugo-x /usr/local/bin/meuscript
- E) chmod 666 /usr/local/bin/meuscript

47.(2019 - IF-ES - IF-ES)

Os administradores de redes precisam entender com clareza sobre o gerenciamento de contas de usuários nos Sistemas Operacionais de Servidores Linux. Em relação ao sistema de contas Linux, analise as afirmativas abaixo:

- I O arquivo /etc/shadow serve para manter senhas criptografadas seguras quanto a acesso não autorizado.
- II Um novo usuário pode ser adicionado utilizando-se ferramentas, como adduser ou useradd.
- III Os usuários dos sistemas Linux recebem um número UID referente a sua identificação, porém o usuário root, por questões de segurança, não dispõe de UID.

É CORRETO o que se afirma em:

- A) I, II e III.
- B) I e II, apenas
- C) I e III, apenas.
- D) II e III, apenas.
- E) Nenhuma das afirmativas está correta.

48.(2019 - CS-UFG - IF Goiano)

Na configuração do Sistema Linux, o comando chmod modifica as permissões de arquivos com respeito à execução, leitura e escrita. A expressão chmod 751 arq2 é equivalente a:

- A) chmod u=rx,g=rwx,o=x arq2
- B) chmod u=rx,g=rwx,o=r arq2
- C) chmod u=rwx,g=rx,o=x arq2
- D) chmod u=rwx,g=rx,o=r arq2

49.(2019 - CCV-UFC - UFC)

Qual dos itens abaixo contém o comando do sistema operacional Linux capaz de mudar o grupo de um arquivo ou diretório do sistema?

- A) df
- B) sed
- C) chown
- D) chmod
- E) passwd

GABARITO

- 1. E
- 2. C
- 3. C
- 4. B
- 5. Errado
- 6. A
- 7. Errado
- 8. A
- 9. D
- 10.C
- 11. C
- 12. B
- 12. D
- 13. C
- 14. C
- 15. C
- 16. D
- 17. D
- 18. D
- 19.B
- 20. Certo
- 21. Errado
- 22.E
- 23. C
- 24. Errado
- 25.B
- 26. B
- 27. Certo
- 28. Errado
- 29. D
- 30.C
- 31. A
- 32.C
- 33. D
- 34. C
- 35. D
- 36. C
- 37. Errado
- 38. A
- 39.A

- 40.C
- 41. C
- 42.A
- 43.E
- 44. E
- 45.E
- 46. C
- 47.B
- 48. C
- 49.C

ESSA LEI TODO MUNDO CON-IECE: PIRATARIA E CRIME.

Mas é sempre bom revisar o porquê e como você pode ser prejudicado com essa prática.

Professor investe seu tempo para elaborar os cursos e o site os coloca à venda.

Pirata divulga ilicitamente (grupos de rateio), utilizando-se do anonimato, nomes falsos ou laranjas (geralmente o pirata se anuncia como formador de "grupos solidários" de rateio que não visam lucro).

Pirata cria alunos fake praticando falsidade ideológica, comprando cursos do site em nome de pessoas aleatórias (usando nome, CPF, endereço e telefone de terceiros sem autorização).

Pirata compra, muitas vezes, clonando cartões de crédito (por vezes o sistema anti-fraude não consegue identificar o golpe a tempo).

Pirata fere os Termos de Uso, adultera as aulas e retira a identificação dos arquivos PDF (justamente porque a atividade é ilegal e ele não quer que seus fakes sejam identificados).

Pirata revende as aulas protegidas por direitos autorais, praticando concorrência desleal e em flagrante desrespeito à Lei de Direitos Autorais (Lei 9.610/98).

Concurseiro(a) desinformado participa de rateio, achando que nada disso está acontecendo e esperando se tornar servidor público para exigir o cumprimento das leis.

O professor que elaborou o curso não ganha nada, o site não recebe nada, e a pessoa que praticou todos os ilícitos anteriores (pirata) fica com o lucro.