etrônico

Au

Professor: Marcus Campiteli, Time Marcus Campite

Foi publicado o edital para o cargo de Engenheiro Civil para os Serviço Municipal de Água e Esgoto de Piracicaba/SP – SEMAE Piracicaba. A banca é da Vunesp.

São 2 vagas imediatas e a duração do concurso será de dois anos, a contar da homologação, prorrogável por igual período.

A prova está marcada para os dias 18 de agosto de 2019. Portanto, dá tempo de se preparar, desde que de forma objetiva e focada. E esse é o objetivo deste curso, ao apresentar a vocês a teoria das normas e livros de forma consolidada e amigável, juntamente com questões comentadas da Vunesp, FCC, Cesgranrio, FGV, ESAF e outras relativas aos assuntos tratados.

O curso que ofereço abrangerá as seguintes matérias do edital, com as respectivas datas das aulas:

Aula	Assunto	Data
0	Fundações	14/6
1	Questões de Fundações Comentadas	14/6
2	Sondagens	16/6
3	Concreto Armado	18/6
4	Estruturas Pré-moldadas	19/6
5	Estruturas Metálicas	20/6
6	Alvenaria	21/6
7	Impermeabilização	22/6
8	Pisos	23/6
9	Revestimentos	24/6
10	Madeira, Materiais Cerâmicos e Vidro	25/6
11	Pinturas	26/6
12	Cobertura	27/6
13	Esquadrias	28/6

14	Instalações Elétricas	29/6
15	Instalações Hidrossanitárias	1/7
16	Instalações Especiais	3/7
17	Análise Orçamentária	5/7
18	SINAPI	8/7
19	Planejamento e Controle	10/7
20	Análise Estrutural	12/7
21	Resistência dos Materiais	15/7
22	Patologias e Recuperação	17/7
23	Fiscalização e Acompanhamento	19/7
24	Avaliações de Imóveis	22/7
25	Perícias	24/7
26	Isolamento Térmico	26/7
27	Uso e Ocupação do Solo	29/7
28	Parcelamento do Solo	31/7
29	Qualidade na Construção Civil	2/8
30	Topografia	5/8
31	Locação de Obra	7/8
32	Autocad	9/8
33	Segurança e Higiene do Trabalho	12/8

Este curso não abrange: Este curso não abrange: Responsabilidade Civil e Criminal, Inovação Tecnológica (parcialmente) e Racionalização na Construção (parcialmente).

Agora, antes de apresentar a Aula 0, deixe eu me apresentar.

Sou engenheiro civil formado pelo Instituto Militar de Engenharia - IME e trabalho como auditor de controle externo no Tribunal de Contas da União — TCU. Fiz mestrado em engenharia civil na UnB e concluí com a dissertação: Medidas para Evitar o Superfaturamento em Obras Públicas decorrente dos Jogos de Planilha.

Na trajetória de concursos, após a elaboração de resumos, resolução de muitas questões e estudo focado, obtive aprovação nos concursos de Perito da Polícia Federal em Engenharia Civil, em 2004, e Auditor Federal de Controle Externo do TCU na área de obras públicas, em 2005. Hoje trabalho neste último.

Trabalhei durante seis anos como engenheiro militar e estou há treze no TCU, sempre participando de auditorias em obras públicas.

Na área de aulas, ministrei cursos de engenharia civil, presenciais e à distância, para o concurso do TCU de 2009 e 2011, TCM/RJ de 2011, TC/DF de 2012, TC/ES 2012, Câmara dos Deputados de 2012, CGU de 2012, Perito da Polícia Federal 2013, INPI 2013, CNJ 2013, DNIT 2013, CEF 2013, ANTT 2013, Bacen 2013, MPU 2013, TRT/15 2013, TRT/17 2013, TRF/3 2013, PF Adm 2014, Suframa 2014, CEF 2014, CBTU 2014, TJ-PA/2014, TCE-RS/2014, TCE-GO/2014, Pref. Florianópolis/2014, Petrobras/2014, TCM-GO/2015, CGE-PI/2015, TCE-CE/2015, TCM-SP/2015, TRT-MG/2015, MPOG/2015, CGM-SP/2015, TCE-RN/2015, MP-SP/2016, ANAC/2016, TCE-SC/2016, Funai/2016, PCDF/2016, PC-PE/2016, TCE-PA/2016, TCE-PR/2016, ALMS/2016, ALERJ/2016, TRT-20/2016, TRT-11/2016, TRF-2/2017, Artesp/2017, Terracap/2017, DPE-RS/2017, DPE-PR/2017, IGP-RS/2017, Embasa/2017, TCE-PE/2017, Detran-CE/2017, IGP-SC/2019, entre outros.

Agora que vocês me conheceram um pouco, retornemos ao nosso curso.

Sabemos que as bancas cobram detalhes da bibliografia disponível nos livros e nas normas acerca do abrangente campo da engenharia civil previsto no edital. Por isso, apresento a teoria dos assuntos de forma detalhada e com base primordial nas normas da ABNT, por serem a fonte mais confiável. Com isso, vocês já estarão habituados aos textos passíveis de serem fontes das questões. Subsidiariamente recorro a livros consagrados de engenharia civil.

Busco mesclar figuras e fotos didáticas aos textos na busca de tornar a matéria o mais amigável possível, de forma a facilitar ao máximo o entendimento das informações truncadas das normas.

O desafio do estudo dessa especialidade é conseguir objetividade diante da sua vasta abrangência. E pretendo alcançar esse objetivo neste curso por meio da apresentação das questões. Afinal, não temos tempo a perder.

Primeiramente apresento a vocês a teoria e as questões relacionadas aos conteúdos teóricos, sem gabarito. Posteriormente, apresento as mesmas questões comentadas e, na parte final, reapresento as questões tratadas na aula, com o gabarito na última folha, para que vocês possam treinar.

Em muitas das questões, os comentários complementam a teoria trazendo mais informações.

Costumo destacar em negrito informações que acho com cara de questão.

Críticas e sugestões poderão ser feitas no próprio sistema do Estratégia assim como encaminhadas ao seguinte endereço de e-mail: marcus_campiteli@hotmail.com.

Estarei no fórum de dúvidas para respondê-los.

Espero que caia na prova somente o que vocês estudem!!!

Bons estudos e boa sorte!!!

1 – Introdução	5
1.1 – Conceitos	6
2 – Fundações Superficiais	7
2.1 – Sapata	7
2.1.1 – Execução	8
2.2 – Bloco	9
2.3 – Radier	
2.4 – Sapata associada (ou radier parcial)	11
2.5 – Viga de fundação	11
2.6 – Sapata corrida	11
2.7 – Outras Considerações sobre Sapatas	
2.7.1 – Viga de equilíbrio	
3 – Fundação Profunda	14
3.1 – Estaca	
3.1.1 – Estacas moldadas in loco	
3.1.2 – Estacas Pré-Moldadas	27
3.1.2.1 – Estaca cravada por percussão	27
3.2 – Tubulão	32
3.2.1 – Tubulões a Céu Aberto	33
3.2.2 – Tubulões a Ar Comprimido	34
3.3 – Caixão	39
3.4 – Preparo da cabeça e ligação com o bloco de coroamento	39
4 – Outras Considerações	40
4.1 – Efeito de grupo de estacas ou tubulões	41
4.2 – Estacas em Grupo	41
4.3 – Solos Expansivos	41
4.4 – Solos Colapsíveis	41
4.5 – Atrito Lateral	41
5 – Questões Comentadas	43
6 – Lista de Questões	47
7 – Gabarito	82

AULA 00: FUNDAÇÕES

Olá, pessoal.

Vamos dar início ao nosso curso com o assunto Fundações.

Os comentários das questões apresentadas encontram-se na Aula 1.

Esta aula de fundações está focada na norma mais atualizada, que é a NBR 6122/2010. Considero que o texto da norma é o mais confiável para servir de base de estudo para esta prova. Ainda mais porque ela é bem atual, de 2010.

O conteúdo é complementado com livros consagrados na área, em especial os livros Fundações: Teoria e Prática, da editora PINI, Técnica de Edificar, do autor Walid Yazigi, e Exercícios de Fundações, do autor Urbano Rodriguez Alonso. Demais fontes são mencionadas no texto.

Bons Estudos!

1 – Introdução

As fundações são responsáveis pela transmissão das cargas das edificações, pontes, viadutos etc. ao solo, seja de forma direta, por fundações superficiais, seja de forma indireta, por fundações profundas.

As fundações superficiais, diretas ou rasas são representadas pelas sapatas, blocos, radier, sapatas associadas, vigas de fundação e sapatas corridas.

Já as fundações profundas são representadas, basicamente, pelas estacas e tubulões.

Fonte:<www.revistatechne.com.br>

As estacas podem ser divididas em estacas moldadas in loco e estacas pré-moldadas.

As estacas moldadas *in loco* são representadas pelas estacas broca, Strauss, Franki, Raiz, Hélice Contínua entre outras, e as estacas pré-moldadas podem ser de concreto, metálicas ou de madeira.

Os tubulões dividem-se, basicamente, entre os tubulões a céu aberto e os tubulões a ar comprimido.

Mas antes de estudarmos os diferentes tipos de fundações, vamos ver alguns conceitos importantes para o entendimento da teoria e que são cobrados em questões de concurso.

1.1 - CONCEITOS

a) Recalque

Movimento vertical descendente de um elemento estrutural. **Quando** o movimento for **ascendente**, denomina-se **levantamento**. Convenciona-se representar o recalque com o sinal positivo.

b) Recalque diferencial específico

Relação entre as diferenças dos recalques de dois apoios e a distância entre eles.

c) Cota de arrasamento

Nível em que deve ser deixado o topo da estaca ou tubulão, demolindo-se o excesso ou completando-o, se for o caso. Deve ser definido de modo a deixar que a estaca e sua armadura penetrem no bloco com um comprimento que garanta a transferência de esforços do bloco à estaca.

d) Nega

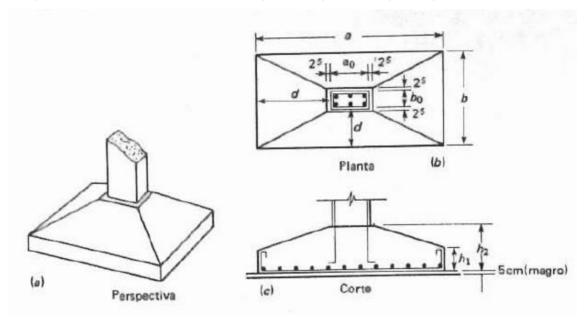
A nega corresponde à **penetração** permanente **de uma estaca**, causada pela aplicação de um golpe do pilão. Em geral é medida **por uma série de dez golpes**. Ao ser fixada ou fornecida, deve ser sempre acompanhada do peso do pilão e da altura de queda ou da energia de cravação (martelos automáticos).

Pode-se dizer que a nega é uma medida indireta e dinâmica da capacidade de carga da estaca.

e) Repique

O repique corresponde à parcela elástica do deslocamento máximo de uma seção da estaca, decorrente da aplicação de um golpe do pilão.

Também pode-se dizer que o repique é uma medida indireta e dinâmica da capacidade de carga da estaca, contudo é pelo deslocamento elástico do topo da estaca.


2 – FUNDAÇÕES SUPERFICIAIS

2.1 - SAPATA

As sapatas são elementos de fundação executados em **concreto armado**, de altura reduzida em relação às dimensões da base, que se caracterizam principalmente por trabalhar à flexão e dimensionados de modo que as **tensões de tração** neles produzidas não sejam resistidas pelo concreto, **mas sim pelo emprego da armadura**.

Elas são indicadas para solos com alta capacidade de suporte e costumam ser mais econômicas que outros tipos de fundação.

Apresento a vocês as figuras a seguir para melhor compreensão das informações apresentadas. A primeira figura em corte apresenta tanto a armadura vertical do pilar quanto a horizontal na parte inferior da sapata. Esta armadura horizontal que é responsável por suportar as tensões de tração.

Fonte: <www.revistatechne.com.br>

Fonte: <www.revistatechne.com.br>

2.1.1 – **E**XECUÇÃO

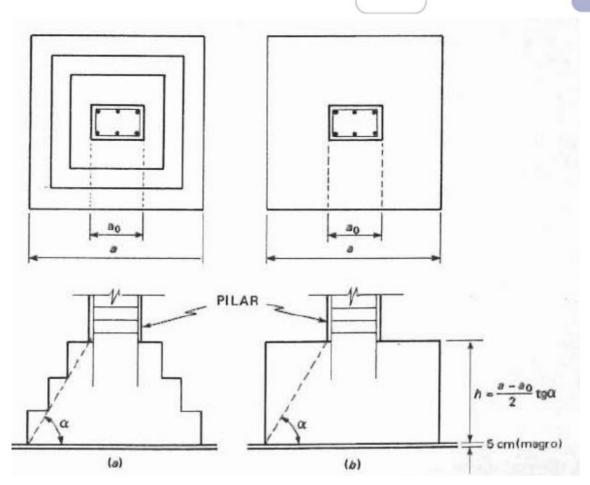
a) Escavação das Cavas

Na escavação em solo, caso se utilizem equipamentos mecânicos, a profundidade de escavação deve ser paralisada no mínimo a 30 cm acima da cota de assentamento prevista, sendo a parcela final removida manualmente.

b) Preparação para a Concretagem

Antes da concretagem o solo ou rocha de apoio das sapatas deve ser vistoriado pelo engenheiro, que confirmará *in loco* a capacidade de suporte do material. Esta inspeção pode ser feita com penetrômetro de barra manual ou outros ensaios expeditos de campo.

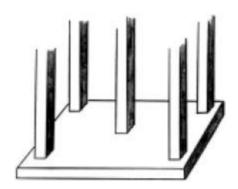
Caso haja necessidade de aprofundar a cava da sapata, pode-se preencher a diferença de cota de assentamento com concreto (fck \geq 10 MPa) ou aumentar o comprimento do pilar. Nesse caso deve-se consultar o projetista estrutural.


O preenchimento com concreto deve ocupar todo o fundo da cava e não só a área de projeção da sapata.

2.2 – BLOCO

Os blocos são elementos de grande rigidez executados com concreto simples ou ciclópicos, dimensionados de modo que as **tensões de tração** nele produzidas possam ser **resistidas pelo concreto**, **sem necessidade de armadura**.

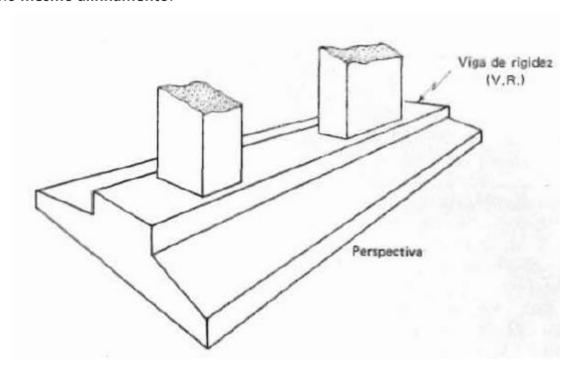
Pode ter suas faces verticais, inclinadas ou escalonadas e apresentar normalmente em planta seção quadrada ou retangular.



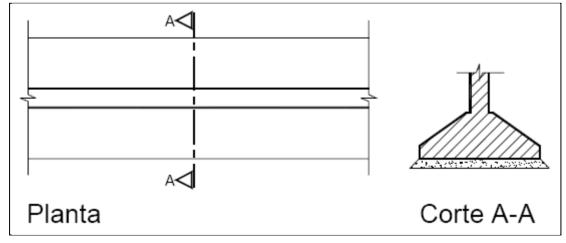
Não confundir blocos de fundação com blocos de coroamento ou de capeamento, os quais são construídos sobre estacas ou tubulões, e são armados de modo a transmitir a carga dos pilares para as estacas ou os tubulões.

2.3 - RADIER

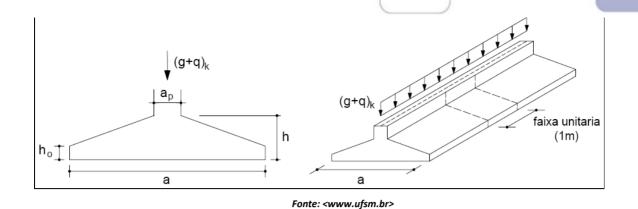
Elemento de fundação superficial que **abrange todos os pilares** da obra ou carregamentos distribuídos (por exemplo: tanques, depósitos, silos, etc.).



Sapata **comum a vários pilares**, cujos **centros**, em planta, **não estejam** situados em um mesmo **alinhamento**.


2.5 – VIGA DE FUNDAÇÃO

Elemento de fundação superficial **comum a vários pilares**, cujos **centros**, em planta, estejam situados no **mesmo alinhamento**.



2.6 - SAPATA CORRIDA

Sapata sujeita à ação de uma carga distribuída linearmente.

Fonte: <www.ufsm.br>

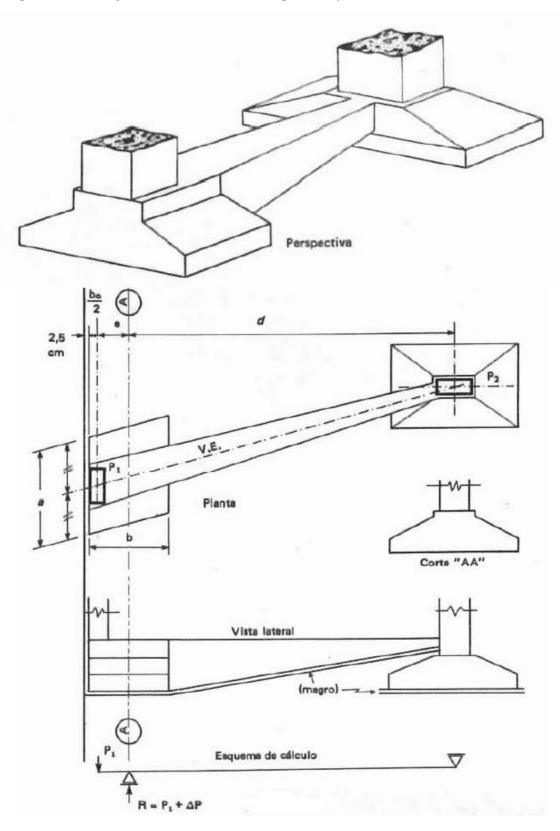
2.7 – OUTRAS CONSIDERAÇÕES SOBRE SAPATAS

De acordo com o livro Exercícios de Fundações, do autor Urbano Alonso Rodriguez, as fundações rasas só são vantajosas quando a área ocupada pela fundação abranger, no máximo, de 50% a 70% da área disponível. E de uma maneira geral, esse tipo de fundação não deve ser usada nos seguintes casos:

- aterro mal compactado;
- argila mole;
- areia fofa e muito fofa;
- existência de água onde o rebaixamento do lençol freático não se justifica economicamente.

Relembrando, quando a sapata suporta apenas um pilar diz-se que ela é uma sapata isolada. Caso o pilar seja de divisa (fronteira com o terreno vizinho), a sapata é chamada de divisa. Quando a sapata suporta dois ou mais pilares, cujos centros, em planta, estejam alinhados, é denominada viga de fundação. Quando a sapara é comum a vários pilares, cujos centros, em planta, não estejam alinhados é denominada sapata associada ou radier parcial

De acordo com o mesmo livro, para se obter um projeto econômico, deve ser feito o maior número possível de sapatas isoladas. Só no caso em que a proximidade entre dois ou mais pilares resultem na sobreposição das sapatas isoladas deve-se lançar mão de uma sapara associada ou de um viga de fundação.

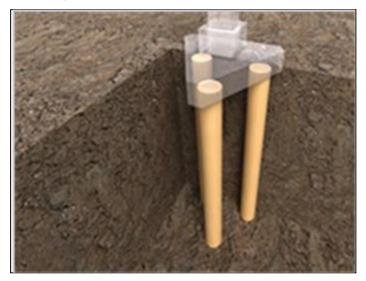

A viga que une os dois pilares, de modo a permitir que a sapata trabalhe com tensão constante, denomina-se viga de rigidez.

Em regra, o condicionamento econômico da sapata associada está diretamente ligado à obtenção de uma viga de rigidez econômica. Para tanto, deve-se buscar que os momentos negativos desta viga sejam aproximadamente iguais ao momento positivo, em módulo.

Nos casos de pilares de divisa ou próximos a obstáculos onde não seja possível fazer com que o centro de gravidade da sapata coincida com o centro de carga do pilar, pode-se adotar uma viga de equilíbrio ou viga-alavanca ligada a outro pilar, criando-se uma estrutura capaz de absorver o momento resultante da excentricidade decorrente do fato de o pilar ficar excêntrico com a sapata.

2.7.1 - VIGA DE EQUILÍBRIO

Elemento estrutural que **recebe as cargas** de um ou dois **pilares** (ou pontos de carga) e é dimensionado de modo a **transmiti-las centradas às fundações**. Da utilização de viga de equilíbrio resultam cargas nas fundações, diferentes das cargas dos pilares nelas atuantes.



Notas:

- a) Quando ocorre uma redução da carga, a fundação deve ser dimensionada, considerando-se apenas 50% desta redução.
- b) Quando da soma dos alívios totais puder resultar tração na fundação do pilar interno, o projeto de fundação deve ser reestudado.

3 – Fundação Profunda

Elemento de fundação que transmite a carga ao terreno pela base (resistência de ponta), por sua superfície lateral (resistência de fuste) ou por uma combinação das duas, e que está assente em **profundidade** superior ao dobro de sua menor dimensão em planta, e **no mínimo 3 m**, salvo justificativa. Neste tipo de fundação incluem-se as estacas, os tubulões e os caixões.

Fonte: < www.leonardi.com.br>

É obrigatório o uso de lastro de concreto magro com espessura não inferior a 5 cm para a execução do bloco de coroamento de estaca ou tubulão.

3.1 - **ESTACA**

Elemento de fundação profunda executado inteiramente por equipamentos ou ferramentas, **sem que**, em qualquer fase de sua execução, **haja descida de operário**. Os materiais empregados podem ser: madeira, aço, concreto pré-moldado, concreto moldado *in loco* ou mistos.

A estaca mista é um tipo de fundação profunda constituída de dois (e não mais do que dois) elementos de materiais diferentes (madeira, aço, concreto pré-moldado e concreto moldado in loco).

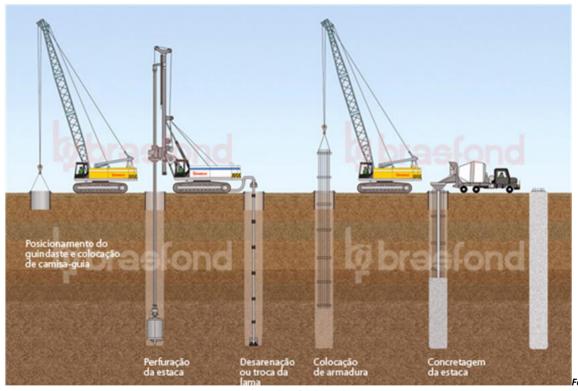
A estaca mista deve satisfazer aos requisitos correspondentes aos dois tipos de materiais associados, conforme considerados anteriormente em estacas de um único elemento estrutural.

3.1.1 – ESTACAS MOLDADAS IN LOCO

As estacas moldadas *in loco* são executadas enchendo-se de concreto ou argamassa perfurações previamente executadas no terreno, através de escavações ou de deslocamento do solo pela cravação de soquete ou de tubo de ponta fechada.

O deslocamento do solo é quando não há retirada de material da perfuração.

Estas perfurações, quando escoradas, podem ter suas paredes suportadas por revestimento a ser recuperado ou a ser perdido, ou por lama tixotrópica (lama bentonítica).


a) Estaca Raiz

Estaca armada e preenchida com argamassa de cimento e areia, moldada *in loco*, executada através de perfuração rotativa ou roto-percussiva, revestida integralmente, no trecho em solo, por um conjunto de tubos metálicos recuperáveis.

A estaca raiz é armada em todo seu comprimento.

Elas possuem diâmetro nominal entre 150 mm a 500 mm.

A perfuração em solo é executada por meio de perfuratriz rotativa ou roto-percussiva que desce o revestimento através de rotação com o uso de circulação direta de água injetada no seu interior.

<www.brasfond.com.br>

Quando ocorrerem solos muito duros ou muito compactos, pode-se executar pré-perfuração avançada por dentro do revestimento.

Ao se encontrar matacões ou topo de rocha, a perfuração é prosseguida por dentro do revestimento mediante emprego de equipamento adequado para perfuração de rocha. Esta

operação, necessária para atravessar o matacão ou embutir a estaca na rocha, causa, usualmente, uma diminuição do diâmetro da estaca que deve ser considerada no dimensionamento.

Após o término da perfuração e antes do início do lançamento da argamassa, se limpa internamente o furo através da utilização da composição de lavagem e, posteriormente, procedese à descida da armadura, montada em feixe ou em gaiola, que é apoiada no fundo do furo.

O furo é preenchido com argamassa mediante bomba de injeção, através de um tubo descido até a ponta da estaca. O preenchimento é feito de baixo para cima até a expulsão de toda água de circulação contida no interior do revestimento.

Após o preenchimento do furo, inicia-se a extração do revestimento.

Periodicamente, coloca-se a cabeça de injeção no topo do revestimento e aplica-se pressão que pode ser de ar comprimido ou através da bomba de injeção de argamassa. Após a aplicação da pressão e retirada dos tubos de revestimento, o nível da argamassa é completado.

A utilização de lama estabilizante pode afetar a aderência entre a estaca e o solo. Normalmente uma lavagem com água pura é suficiente para eliminar esse inconveniente.

Não se deve executar estacas com espaçamento inferior a 5 diâmetros em intervalo inferior a 12 horas. Esta distância refere-se à estaca de maior diâmetro.

A argamassa a ser utilizada deve ter fck > 20 MPa e deve satisfazer as seguintes exigências:

- a) consumo de cimento ≥ 600 kg/m³;
- b) fator água/cimento entre 0,5 e 0,6;
- c) agregado: areia e/ou pedrisco.

b) Estaca escavada com injeção ou Micro estaca

A micro estaca é uma estaca moldada *in loco*, executada através de perfuração rotativa com tubos metálicos (revestimento) ou roto-percussiva por dentro dos tubos, no caso de matacão ou rocha. Esta estaca é armada e injetada, com calda de cimento ou argamassa, através de tubo "manchete", visando aumentar a resistência do atrito lateral.

Este tipo de estaca comporta duas variantes com relação à armadura: na primeira delas introduzse um tubo metálico com função estrutural, dotado de manchetes para a injeção e na segunda a armadura é constituída de barras (ou gaiola) e a injeção é feita através de um tubo plástico também dotado de manchetes.

A perfuração em solo é executada por meio de perfuratriz rotativa que desce o revestimento através de rotação com o uso de circulação direta de água injetada no seu interior. Quando ocorrerem solos muito duros ou muito compactos, pode-se executar pré-perfuração avançada por dentro do revestimento.

Ao se alcançar matacão ou topo rochoso, a perfuração é prosseguida por dentro do revestimento mediante emprego de martelo de fundo ou sonda rotativa. Esta operação, necessária para atravessar o matacão ou embutir a estaca na rocha causa, usualmente, uma diminuição do diâmetro da estaca que deve ser considerada no dimensionamento.

Antes da colocação da armadura se limpa internamente o furo através de lavagem. Posteriormente é descida a armadura constituída de tubo metálico manchetado ou gaiola que é apoiada no fundo do furo.

Quando em gaiola, as barras são montadas com um tubo de PVC manchetado. As bainhas deverão ser espaçadas no máximo 1 m.

A calda de cimento é aplicada por meio de bomba de injeção, através de hastes dotadas de obturadores duplos. A primeira injeção, chamada injeção da bainha ou preenchimento, deve ser feita a partir da extremidade inferior do tubo e deve preencher o espaço anelar entre o tubo e o furo. O revestimento é retirado após a injeção da bainha.

As injeções posteriores (primária, secundária, etc.) são feitas de baixo para cima em cada manchete, verificando-se os volumes, as pressões e critérios de injeção previstos em projeto.

Não se devem executar estacas com espaçamento inferior a 5 diâmetros em intervalo inferior a 12 horas. Esta distância refere-se à estaca de maior diâmetro.

A argamassa a ser utilizada ter fck > 20 MPa e deve satisfazer as seguintes exigências:

- a) consumo de cimento não inferior a 600 kg/m3;
- b) fator água I cimento entre 0.5 e 0,6; e
- c) agregado: areia e pedrisco.

c) Estaca tipo broca

Tipo de fundação profunda executada por **perfuração com trado manual** e posterior concretagem, sempre acima do lençol freático, ou seja, é uma estaca escavada mecanicamente (sem emprego de revestimento ou de fluido estabilizante).

Recomenda-se para as estacas tipo broca um **diâmetro mínimo de 20 cm e máximo de 50 cm**. Estas estacas são indicadas para pequenas cargas (da ordem de 50 a 100 kN).

O concreto deve ser lançado do topo da perfuração com o auxílio de funil, devendo apresentar fck ≥ 15 Mpa, consumo de cimento > 300 kg/m³ e consistência plástica.

Em geral, estas estacas não são armadas, utilizando-se somente ferros de ligação com o bloco. Quando necessário, a estaca pode ser armada para resistir aos esforços da estrutura.

A perfuração manual restringe a utilização destas estacas a pequenas cargas pela pouca profundidade que se consegue alcançar (da ordem de 6 a 8 m) e também pela não garantia de verticalidade do furo.

Fonte: <www.ufsm.br>

Pode-se também executar a perfuração com o emprego de soquete. Nesse caso, a estaca broca será do tipo estaca apiloada.

d) Estaca tipo Strauss

É uma estaca de concreto moldada *in loco*, executada através da escavação, mediante emprego de uma sonda (piteira), com a simultânea introdução de revestimento metálico em segmentos rosqueados, até que se atinja a profundidade projetada.

O processo consiste na retirada de terra com sonda ou piteira e a simultânea introdução de tubos metálicos rosqueáveis entre si, até atingir a profundidade desejada e a posterior lançamento do concreto e a retirada gradativa do revestimento e o simultâneo apiloamento do concreto.

O revestimento integral assegura a estabilidade da perfuração e garante as condições para que não ocorra a mistura do concreto com o solo ou o estrangulamento do fuste da estaca.

Este tipo de estaca não deve ser utilizado em areias submersas ou em argilas muito moles saturadas.

Apresenta capacidade de carga menor que as estacas Franki e pré-moldadas de concreto, assim como **limitação quanto à presença de lençol freático**.

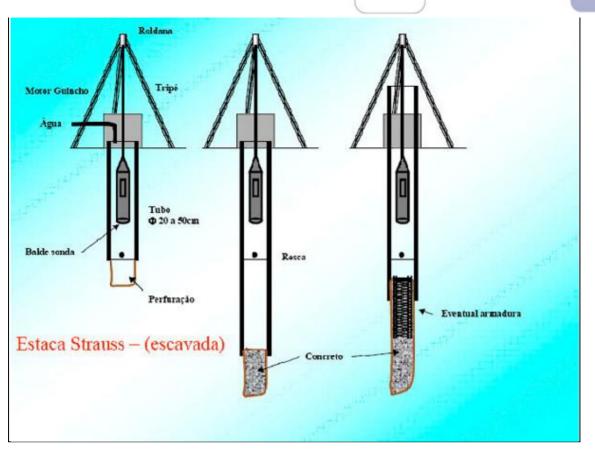
Elas abrangem uma faixa de carga da ordem de 200 a 800 kN.

A estaca Strauss é indicada para locais confinados devido ao equipamento ser pequeno e leve, e **provoca pouca vibração**.

Quando executadas uma ao lado da outra (estacas justapostas), podem servir de cortina de contenção para a execução de subsolos (desde que devidamente armadas).

A perfuração é iniciada com um soquete, até uma profundidade de 1 m a 2 m. O furo feito com o soquete serve de guia para introdução do primeiro tubo de revestimento, dentado na extremidade inferior, chamado "coroa". Após a introdução da coroa, o soquete é substituído pela sonda (piteira), a qual, por golpes sucessivos, vai retirando o solo do interior e abaixo da "coroa", que vai sendo introduzida no terreno. Quando a coroa estiver toda cravada, é rosqueado o tubo seguinte, e assim por diante, até que se atinja a profundidade prevista para a perfuração ou as condições previstas para o terreno. Imediatamente antes da concretagem, deve ser feita a limpeza completa do fundo da perfuração, com total remoção da lama e da água eventualmente acumuladas durante a perfuração.

Fonte:<www.mrsondagens.com>


Fonte:<www.mrsondagens.com>

Caso as características do terreno permitam, o revestimento com o tubo pode ser parcial.

Recomenda-se que as estacas Strauss tenham o seu diâmetro limitado a 500 mm.

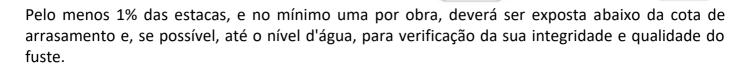
Com o furo completamente esgotado e limpo, é lançado o concreto em quantidade suficiente para se ter uma coluna de aproximadamente 1 m (ponta da estaca). Sem puxar a linha de tubos de revestimento, apiloa-se o concreto, para formar uma espécie de bulbo.

Para a execução do fuste, o concreto é lançado dentro da linha de tubos e, à medida que é apiloado, vão sendo retirados os tubos com o emprego do guincho manual. Para garantia de continuidade do fuste, deve ser mantida dentro da linha de tubos, durante o apiloamento, uma coluna de concreto suficiente para que este ocupe todo o espaço perfurado e eventuais vazios e deformações no subsolo. O pilão não deve ter oportunidade de entrar em contato com o solo da parede ou base da estaca, para não provocar desabamento ou mistura de solo com o concreto; este cuidado deve ser reforçado no trecho eventualmente não revestido.

Fonte: < www.fxsondagens.com.br>

O concreto utilizado deve apresentar **fck ≥20 Mpa**, **consumo de cimento ≥ 300 kg/m³** e abatimento ou *slump test* entre 8 e 12 cm para estacas não armadas e de 12 a 14 cm para estacas armadas.

Caso ao final da perfuração exista água no fundo do furo que não possa ser retirada pela sonda, deve-se lançar um volume de concreto seco para obturar o furo. Neste caso, deve-se desprezar a contribuição da ponta da estaca na sua capacidade de carga.


No caso das estacas não sujeitas a tração ou a flexão, a armadura é apenas de arranque sem função estrutural e as barras de aço podem ser posicionadas no concreto, uma a uma, sem estribos, imediatamente após a concretagem, deixando-se para fora a espera prevista em projeto.

Para estacas armadas, a gaiola de armadura deve ser introduzida no revestimento antes da concretagem. Neste caso o soquete deve ter diâmetro menor que o da armadura.

Nas estacas dimensionadas para suportar tração ou flexão, o projeto da armadura deve obedecer aos seguintes critérios:

- a) o diâmetro mínimo para execução de estacas armadas é de 32 cm;
- b) os estribos devem ter espaçamento entre 15 e 30 cm.

Não se devem executar estacas com espaçamento inferior a 5 diâmetros em intervalo inferior a 12 horas. Esta distância refere-se à estaca de maior diâmetro.

e) Estaca tipo Franki

Estaca moldada in loco executada pela cravação, por meio de sucessivos golpes de um pilão, de um tubo de ponta fechada por uma bucha seca constituída de pedra e areia previamente firmada na extremidade inferior do tubo por atrito. Esta estaca possui base alargada e é integralmente armada.

Atingida a cota de apoio, procede-se à expulsão da bucha, execução de base alargada, instalação da armadura e execução do fuste de concreto apiloado com a simultânea retirada do revestimento.

A execução da estaca pode apresentar alternativas executivas em relação aos procedimentos da estaca padrão como, por exemplo: perfuração interna (denominado "cravação à tração"), fuste pré-moldado; fuste encamisado com tubo metálico perdido; fuste executado com concreto plástico vibrado ou sem execução de base alargada.

A cravação do tubo é executada por meio de golpes do pilão na bucha seca que adere ao tubo por atrito até a obtenção da nega.

As negas de cravação do tubo devem ser obtidas de duas maneiras em todas as estacas:

- a) para 10 golpes de 1,0 m de altura de queda do pilão; e
- b) para 1 golpe de 5,0 m de altura de queda do pilão.

O seu processo executivo (cravação de um tubo com a ponta fechada e execução de base alargada) causa muita vibração.

Atingida a cota de projeto e obtida a nega especificada, se expulsa a bucha através de golpes do pilão com o tubo preso à torre. A seguir introduz-se um volume de concreto seco (fator água/cimento = 0.18) formando assim a base.

Na confecção da base é necessário que os últimos 0,15 m³ sejam introduzidos com uma energia mínima de 2,5 MN x m para as estacas com diâmetro igual ou inferior a 450 mm e de 5,0 MN x m para estacas com diâmetro de 450 mm até 600 mm. Para as estacas com diâmetros de 700 mm os últimos 0,25 m³ devem ser introduzidos com uma energia mínima de 9,0 MN x m. Em caso de volume diferente, a energia deve ser proporcional ao volume.

A energia é obtida pelo produto do peso do pilão pela altura de queda e pelo número de golpes.

Ao final da execução da base, coloca-se a armadura que deve ser nela ancorada.

A armadura é integral, pois faz parte do processo executivo da estaca e também é fundamental para permitir o controle executivo. É constituída de no mínimo quatro barras de aço CA-50. A extremidade inferior da ferragem é feita com aço CA-25 (em forma de cruzeta) soldada à armadura principal.

A concretagem do fuste é feita lançando-se sucessivas camadas de pequeno volume de concreto seco (fator água/cimento = 0.36) com apiloamento e simultânea retirada do tubo. No caso de fuste vibrado o fator a/c deverá ser adequado a essa metodologia executiva.

Nesta operação deve-se garantir uma altura mínima de concreto dentro do tubo.

A concretagem deve ser feita até pelo menos 0,30m acima da cota de arrasamento.

Deverá ser controlado o encurtamento da armadura durante a execução do fuste.

No caso de execução de uma estaca tipo Franki é necessário que todas as demais estacas situadas em um círculo igual a seis vezes o diâmetro da estaca estejam cravadas e concretadas há pelo menos 12 horas.

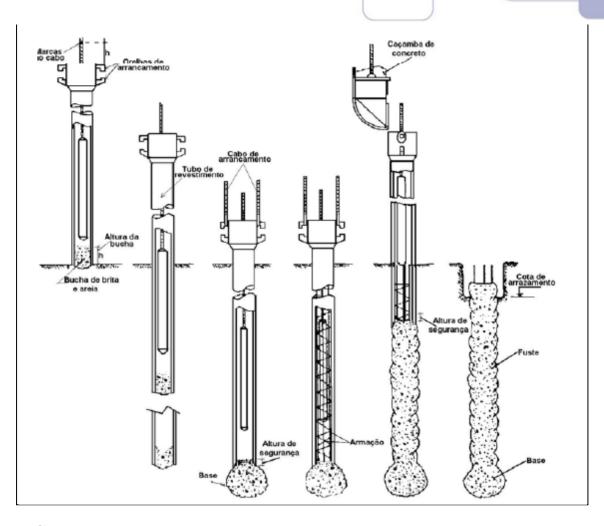
Quando se deseja eliminar o risco de levantamento das estacas vizinhas ou minimizar os efeitos de vibração, deve-se empregar metodologia executiva apropriada, como pré-furo, "cravação a tração" ou furo de alívio.

Pelo menos 1% das estacas, e no mínimo uma por obra, deverá ser exposta abaixo da cota de arrasamento e, se possível, até o nível d'água, para verificação da sua integridade e qualidade do fuste.

O consumo mínimo de cimento é de 350 kg/m³ e o fck do concreto deve ser ≥ 20 MPa.

A faixa de carga dessas estacas é de 550 a 1.700 kN.

Não se recomendam essas estacas nos seguintes casos:


- terrenos com matacões;
- locais com construções vizinhas precárias;
- terrenos com camadas de argila mole saturada (problema de estrangulamento de fuste).

Neste último caso, um possível recurso é reforçar a própria argila mole como uso de areia, cravando-se o tubo, que a seguir é cheio de areia e arrancando o mesmo. A seguir, recrava-se o tubo (com a bucha refeita). A adição de areia na argila mole pode ser feita mais de uma vez.

Outro recurso possível é a concretagem em argilas moles, que consiste em preencher totalmente o tubo de concreto plástico e, a seguir, removê-lo com auxílio de martelo vibratório (estacas com fuste vibrado).

Ao contrário das estacas pré-moldadas, essas estacas são recomendadas para o caso de a camada resistente encontrar-se a profundidades variáveis.

No caso de terrenos com pedregulhos ou pequenos matacões relativamente dispersos, pode-se utilizar esse tipo de estacas.

f) Estaca Hélice

As estacas hélice podem ser do tipo contínua monitorada ou do tipo de deslocamento monitorada.

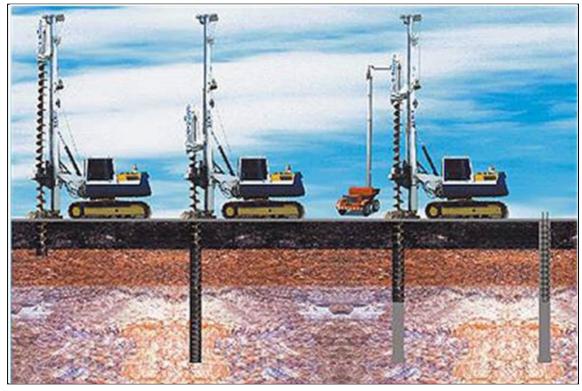
f.1) Estaca Hélice Contínua Monitorada

Estaca de concreto moldada *in loco*, executada mediante a introdução no terreno, por rotação, de um trado helicoidal contínuo. A injeção de concreto é feita pela haste central do trado simultaneamente à sua retirada. A **armadura** é sempre colocada **após a concretagem da estaca**.

O concreto é bombeado pelo interior da haste com sua simultânea retirada. A ponta da haste é fechada por uma tampa para evitar entrada de água ou contaminação do concreto pelo solo. Esta tampa é aberta pelo peso do concreto no início da concretagem.

A retirada da hélice necessita ser puxada por um guindaste na ponta do equipamento, uma vez que a pressão do concreto não é suficiente para a remoção.

Se a concretagem da estaca for feita com o trado girando, este deve girar no sentido da perfuração.


O concreto utilizado deve apresentar resistência característica **fck de 20 Mpa**, ser bombeável, com **abatimento de 22 ± 3 cm**, e composto de cimento, areia e pedrisco, com **consumo mínimo de cimento de 400 kg/m³**, **fator água/cimento \leq 0,6**, e % de argamassa em peso \geq 55%.

A **colocação da armadura**, em forma de gaiola deve ser feita imediatamente **após a concretagem**. Sua descida pode ser auxiliada por peso ou vibrador. A armadura deve ser enrijecida para facilitar a sua colocação.

Não se devem executar estacas com espaçamento inferior a 5 diâmetros em intervalo inferior a 12 horas. Esta distância refere-se à estaca de maior diâmetro.

Fonte: <www.leonardi.com.br>

Fonte:<www.solossantini.com.br>

Essas estacas são indicadas para áreas urbanas, por não ocasionar vibrações e ruídos exagerados. São utilizadas também cm pré-escavações para introdução de perfis metálicos, caso não se deseje uma estaca moldada in loco.

O que mais caracteriza o sistema é a alta produtividade e o número reduzido de pessoas para a execução das estacas.

A estaca pode ser executada com inclinação de até 14°.

O torque e o arranque do equipamento do trado helicoidal variam de acordo com o diâmetro e comprimento da estaca.

Não se devem executar estacas com espaçamento inferior a 5 diâmetros (estaca de maior diâmetro) em intervalo inferior a 12 h. Isso porque a concretagem é feita sob pressão e o concreto tem abatimento alto, o que pode provocar ruptura do solo entre elas.

Pelo menos 1% das estacas, ou no mínimo uma, deve ser exposta abaixo da cota de arrasamento e, se possível, até o nível d'água, para verificação da sua integridade e qualidade do fuste.

Quando só existem forças de compressão que aplicam a tensão máxima na estaca de 5 MPa, costuma-se dispensar a armadura.

f.2) Estaca Hélice de Deslocamento Monitorada

É uma estaca de deslocamento, de concreto moldado in loco, mediante a introdução no terreno, por rotação, de um trado com características tais que ocasionam um deslocamento do solo junto ao fuste e à ponta, **não havendo retirada de solo**. A injeção de concreto é feita pelo interior do tubo central.

Devido à grande resistência desenvolvida durante a perfuração, o equipamento deverá ter um torque compatível com o diâmetro da estacas e características do terreno, sendo de no mínimo de 200 kN.m. Os diâmetros usuais das estacas hélice de deslocamento variam entre 310 mm e 610 mm.

Além disso, a estaca hélice de deslocamento apresenta a peculiaridade de permitir que a armadura seja colocada pelo tubo central do trado antes da concretagem. Neste caso a tampa metálica será perdida.

g) Estacas escavadas com uso de fluído estabilizante

São estacas escavadas com uso de fluído estabilizante que pode ser lama bentonítica ou polímero sintético para sustentação das paredes da escavação.

A concretagem é submersa, com o concreto deslocando o fluido estabilizante em direção ascendente para fora do furo.

Podem ter seções circulares, também denominadas "estacões", retangulares (denominadas barretes) ou parede-diafragma quando contínuas.

g.1) Escavação

Antes de iniciar a escavação da estaca e com o objetivo de guiar a ferramenta de escavação, deve ser cravada uma camisa metálica ou executada uma mureta-guia. Estas guias devem ser cerca de 5 cm maiores que a estaca projetada, e devem ser embutidas no terreno com um comprimento não inferior a 1m.

A escavação da estaca é feita simultaneamente ao lançamento do fluido, cuidando-se para que o seu nível esteja sempre, no mínimo, 1,50 m acima do lençol freático.

A perfuração deve ser contínua até a sua conclusão. Caso não seja possível, o efeito da interrupção deve ser analisado devendo ser adotadas medidas que garantam a carga de projeto, como por exemplo, o seu aprofundamento.

Uma vez terminada a escavação e antes da concretagem deve ser verificada a porcentagem de areia em suspensão na lama e em função deste valor proceder-se-á à sua troca ou desarenação para garantir sua qualidade durante toda a concretagem.

Em se tratando do polímero, a decantação é imediata, não necessitando de desarenação, apenas limpeza do fundo.

Em função da especificação do projeto pode ser necessária também uma plena limpeza do fundo da escavação com "air-lift" a fim de melhorar o contato concreto-solo ou rocha.

g.2) Colocação da armadura

Antes do início da concretagem, e estando o fluido dentro das especificações indicadas, é feita a colocação da armadura de projeto. A armadura deve ser colocada com espaçadores para assegurar o cobrimento de projeto e sua centralização.

g.3) Concretagem

A técnica de concretagem é submersa e contínua. Utiliza-se tubo tremonha e a concretagem é executada imediatamente após as operações anteriores devendo ser feita, até no mínimo, 50 cm acima da cota de arrasamento.

O concreto a ser utilizado deve satisfazer as seguintes exigências:

- a) consumo de cimento mínimo de 400 kg/m3;
- b) abatimento ou "slump test" igual a 22 ± 3 cm;
- a) fator água/cimento ≤ 0,6;
- b) dimensão máxima do agregado: 19mm (brita 1);
- c) % de argamassa em massa: 55%;
- d) traço tipo bombeado;
- e) fck > 20 MPa.

É permitido o uso de agregados miúdos artificiais.

g.4) Demais detalhes de Execução

Não se devem executar estacas com espaçamento inferior a 5 diâmetros em intervalo inferior a 12 horas. Esta distância refere-se à estaca de maior diâmetro. No caso de parede-diafragma o prazo para concretagem de painéis contíguos é de 24 horas.

Pelo menos 1% das estacas, e no mínimo uma por obra, deverá ser exposta abaixo da cota de arrasamento e, se possível, até o nível d'água, para verificação da sua integridade e qualidade do fuste.

g.5) Lama Bentonítica

É uma lama formada pela mistura de bentonita com água limpa, em misturadores de alta turbulência, com uma concentração variável em função de viscosidade e densidade que se pretende obter.

A lama bentonítica, depois de misturada, deve ficar em repouso por 12 horas para sua plena hidratação e deve possuir teor de areia de até 3%.

A **bentonita** é uma argila produzida a partir de jazidas naturais, sofrendo, em alguns casos, um beneficiamento. O argilo-mineral predominante é a **montmorilonita** sódica, o que explica sua tendência ao inchamento.

A lama bentonítica possui as seguintes características:

- estabilidade produzida pelo fato de a suspensão de bentonita se manter por longo período;
- capacidade de formar nos vazios do solo e especialmente junto à superfície lateral da escavação uma película impermeável (cake);
- tixotropia, isto é, ter um comportamento fluido quando agitada, porém capaz de formar um "gel" quando em repouso.

3.1.2 - ESTACAS PRÉ-MOLDADAS

As estacas pré-moldadas caracterizam-se por serem cravadas no terreno por percussão, prensagem ou vibração e por fazerem parte do grupo denominado "estacas de deslocamento".

As estacas cravadas são atualmente denominadas "estacas de deslocamento".

As estacas pré-moldadas podem ser constituídas por um único elemento estrutural (madeira, aço, concreto armado ou protendido) ou pela associação de dois desses elementos (e não mais do que dois), quando será denominada "estaca mista".

3.1.2.1 – ESTACA CRAVADA POR PERCUSSÃO

Tipo de fundação profunda em que a própria estaca ou um molde é introduzido no terreno por golpes de martelo (por exemplo: de gravidade, de explosão, de vapor, de diesel, de ar comprimido, vibratório). Em certos casos, esta cravação pode ser precedida por escavação ou lançagem.

Fonte: <www.geotecnet.com.br>

Fonte: <www.meksol.com.br>

a) Estacas de madeira

As estacas de madeira são empregadas usualmente para obras provisórias. Se forem usadas para **obras permanentes, terão que ser protegidas** contra ataque de fungos, bactérias aeróbicas, térmitas etc.

A ponta e o topo devem ter diâmetros maiores que 15 cm e 25 cm, respectivamente.

As estacas de madeira devem ter seus topos (cota de arrasamento) permanentemente abaixo do nível d'água.

Em terrenos com matações, devem ser evitadas as estaças de madeira.

Quando se tiver que penetrar ou atravessar camadas resistentes, as pontas devem ser protegidas por ponteira de aço.

A cravação é normalmente executada com martelo de queda livre, cuja relação entre o peso do martelo e o peso da estaca seja a maior possível, respeitando-se a relação mínima de 1,0.

b) Estacas metálicas ou de aço

As estacas de aço podem ser constituídas por perfis laminados ou soldados, simples ou múltiplos, tubos de chapa dobrada (seção circular, quadrada ou retangular), tubo sem costura e trilhos.

Sua faixa de carga varia em torno de 400 a 3.000 kN. Embora seja o tipo de estaca mais cara por unidade de carga, ela pode ser vantajosa nos seguintes casos:

- quando não se deseja vibração durante a cravação (principalmente se forem perfis simples);
- quando servem de apoio a pilares de divisa, pois eliminam o uso de vigas de equilíbrio e ajudam no escoramento no caso de subsolos (perfis com pranchões de madeira).

As estacas de aço devem resistir à corrosão pela própria natureza do aço ou por tratamento adequado. Quando inteiramente enterradas em terreno natural, independentemente da situação do lençol d'água, as estacas de aço dispensam tratamento especial. Havendo, porém, trecho desenterrado ou imerso em aterro com materiais capazes de atacar o aço, é obrigatória a proteção deste trecho com um encamisamento de concreto ou outro recurso adequado (por exemplo: pintura, proteção catódica, etc.).

As estacas devem ser retilíneas, assim consideradas as que apresentem flecha máxima de 0,2% do comprimento de qualquer segmento nela contido.

b.1) Cravação

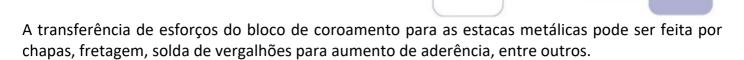
A cravação pode ser feita por percussão, prensagem ou vibração.

Para evitar danificar a estaca durante a cravação por percussão, o uso de martelos mais pesados e com menor altura de queda é mais eficiente do que o uso de martelos mais leves e com grande altura de queda.

Na cravação com martelo de queda livre, o peso do martelo deve ser \geq 10 kN (1 tf) ou \geq 30 kN (3 tf) para estacas com carga de trabalho entre 0,7 MN (70 tf) e 1,3 MN (130 tf).

Pode-se adotar martelos automáticos ou vibratórios observando as recomendações dos fabricantes.

Caso a cota de arrasamento fique abaixo da cota do plano de cravação, pode-se utilizar elemento complementar, denominado prolonga ou suplemento, limitado a 2,5 m.


Para cravação em terrenos resistentes, podem ser empregadas pré-perfurações. Nesse caso, o eventual desconfinamento deve ser considerado pelo projetista.

As tensões de cravação não devem superar 80% da tensão de escoamento do aço, podendo esse limite ser aumentado em 10% caso sejam feitas medições da tensão durante a cravação.

Na cravação por percussão ou vibração, quando houver aproveitamento das sobras de estacas, os segmentos utilizados devem ter comprimento mínimo de 2 m. Isto não se aplica às estacas cravadas estaticamente.

Pode ocorrer relaxação ou cicatrização do terreno. Para sua identificação recomenda-se a determinação da nega descansada (alguns dias após a cravação). Se a nova nega for superior à obtida no final da cravação, deve-se recravar a estaca.

A relaxação ou cicatrização variam de poucas horas para solos não coesivos e até alguns dias para solos argilosos.

c) Estacas pré-moldadas de concreto

As estacas de concreto pré-moldado podem ser de concreto armado ou protendido, vibrado ou centrifugado, com qualquer forma geométrica da sua seção.

Da mesma forma que as estacas metálicas, a cravação de estacas pré-moldadas de concreto pode ser feita por percussão, prensagem ou vibração, assim como para evitar danificar a estaca durante a cravação por percussão, o uso de martelos mais pesados e com menor altura de queda é mais eficiente do que o uso de martelos mais leves e com grande altura de queda.

A faixa de carga dessas estacas varia na faixa entre 200 a 1.500 kN. Normalmente, não se recomendam essas estacas nos seguintes casos:

- terrenos com presença de matacões ou camadas de pedregulhos;
- terrenos em que a previsão da cota da ponta da estaca seja muito variável, de modo que não seja possível selecionar regiões de comprimento constante (a exemplo de solos residuais com a matriz próxima da região da ponta da estaca);
- caso de construções vizinhas em estado precário.

c.1) Cravação

Na cravação com martelo de queda livre, o peso do martelo deve ser \geq 20 kN (2 tf) e \geq 75% do peso da estaca ou \geq 40 kN (4 tf) para estacas com carga de trabalho entre 0,7 MN (70 tf) e 1,3 MN (130 tf).

Caso a cota de arrasamento fique abaixo da cota do plano de cravação, pode-se utilizar elemento complementar, denominado prolonga ou suplemento, que pode ser de aço ou concreto, limitado a 3 m.

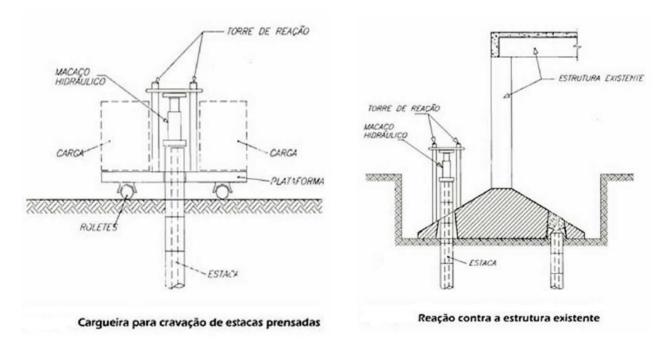
Para cravação em terrenos resistentes, podem ser empregadas pré-perfurações (sustentadas ou não) ou auxiliadas por jato d'água (lançagem). Nesse caso, o eventual desconfinamento deve ser considerado pelo projetista.

As tensões de compressão na cravação não devem superar 85% da resistência nominal do concreto. No caso de estacas protendidas, as tensões de tração devem ser ≤ 90% do valor da protensão mais 50% da resistência nominal do concreto à tração. No caso de estacas armadas as tensões de tração devem ser ≤ 70% da tensão de escoamento do aço da armadura. Esses limites podem ser aumentados em 10% caso sejam feitas medições da tensões durante a cravação.

As estacas pré-moldadas podem ser emendadas através de anéis soldados ou outros dispositivos. O uso de luvas de encaixe exige várias condições.

Pode haver aproveitamento das sobras de estacas, desde que se tenha um comprimento mínimo de 2 m e seja utilizado somente um segmento de sobra por estaca. Posteriormente, a sobra deverá ser o primeiro elemento a ser cravado.

Da mesma forma que para as estacas metálicas, pode ocorrer relaxação ou cicatrização do terreno. Para sua identificação recomenda-se a determinação da nega descansada (alguns dias após a cravação). Se a nova nega for superior à obtida no final da cravação, deve-se recravar a estaca.

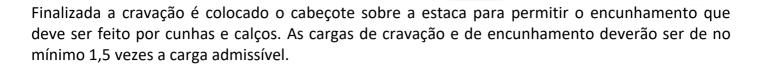

No caso de estacas com concreto danificado abaixo da cota de arrasamento, deve-se fazer a demolição do trecho comprometido e recompô-lo até esta cota. Estacas cujo topo resulte abaixo da cota de arrasamento prevista devem ser emendadas fazendo-se o transpasse da armadura.

d) Estaca de Reação ou tipo Mega

Também conhecidas como estacas prensadas, essas estacas, compostas por peças de concreto armado vazadas ou perfis metálicos, são cravadas com auxílio de um macaco hidráulico que reage contra uma cargueira ou contra a própria estrutura.

Embora sua origem esteja relacionada com o emprego em reforços de fundações, podem também ser usadas como fundação inicial nos casos em que há necessidade de reduzir a vibração ao máximo e quando nenhum outro tipo de estaca pode ser feito.

Sua faixa de carga situa-se em torno de 700 kN.



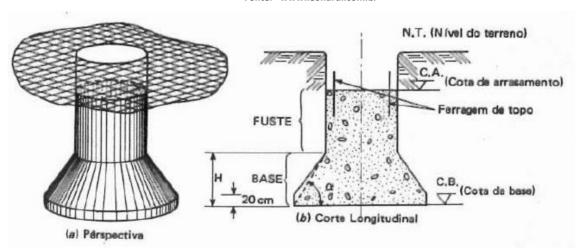
d.1) Cravação

Deve ser realizada através de macaco hidráulico acionado por bomba elétrica ou manual.

Em solos porosos a cravação pode ser auxiliada através da saturação do solo e em areia compactas com jatos de água pelo interior do segmento.

Quando os segmentos forem de concreto a emenda será feita por simples superposição ou através de solidarizarão especificada em projeto. As emendas de segmentos metálicos serão feitas por solda ou rosca.

3.2 - TUBULÃO


Trata-se de uma fundação profunda escavada manual ou mecanicamente, em que, pelo menos na sua etapa final, **há descida de pessoal** para alargamento da base ou limpeza do fundo quando não há base.

Neste tipo de fundação **as cargas são transmitidas essencialmente pela base** a um substrato de major resistência.

Pode ser feito a céu aberto ou sob ar comprimido (pneumático) e ter ou não base alargada. Pode ser executado com ou sem revestimento, podendo este ser de aço ou de concreto. No caso de revestimento de aço (camisa metálica), este poderá ser perdido ou recuperado.

Fonte: <www.leonardi.com.br>

O concreto para a execução dos tubulões deve satisfazer as seguintes exigências:

- consumo de cimento não inferior a 300 kg/m3;

- abatimento ou "slump test": entre 8 e 12 cm;
- agregado: diâmetro máximo 25mm (brita 2);
- fck > 20 MPa aos 28 dias.

A integridade dos tubulões deve ser verificada em no mínimo um por obra, por meio da escavação de um trecho do seu fuste.

Não é necessário o uso de vibrador. Por esta razão o concreto deve ter plasticidade suficiente para assegurar a ocupação de todo o volume da base.

Quando previstas cotas variáveis de assentamento entre tubulões próximos, a execução deve ser iniciada pelos tubulões mais profundos, passando-se a seguir para os mais rasos.

Não pode ser feito trabalho simultâneo em bases alargadas em tubulões cuja distância, de centro a centro, seja inferior a 2,5 vezes o diâmetro da maior base.

Quando a base do tubulão for assente sobre rocha inclinada, pode-se escalonar a superfície ou utilizar chumbadores para evitar o deslizamento do elemento de fundação.

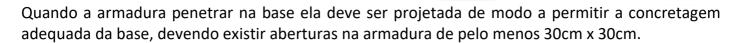
Sempre que a concretagem não for feita imediatamente após o término do alargamento e sua inspeção, nova inspeção deve ser feita por ocasião da concretagem, limpando-se cuidadosamente o fundo da base e removendo-se a camada eventualmente amolecida pela exposição ao tempo ou por águas de infiltração.

3.2.1 - TUBULÕES A CÉU ABERTO

Este tipo de fundação é empregado acima do lençol freático, ou mesmo abaixo dele nos casos em que o solo se mantenha estável sem risco de desmoronamento e seja possível controlar a água do interior do tubulão.

a) Escavação do fuste

O fuste pode ser escavado manualmente por poceiros ou através de perfuratrizes até a profundidade prevista em projeto.


b) Alargamento da base

A base pode ser escavada manual ou mecanicamente. Quando mecanicamente é obrigatória a descida de poceiro para remoção do solo solto que o equipamento não consegue retirar.

Antes da concretagem o material de apoio das bases deverá ser inspecionado por engenheiro, que confirmará in loco a capacidade suporte do material, autorizando a concretagem. Esta inspeção poderá ser feita com penetrômetro de barra manual.

c) Colocação da armadura

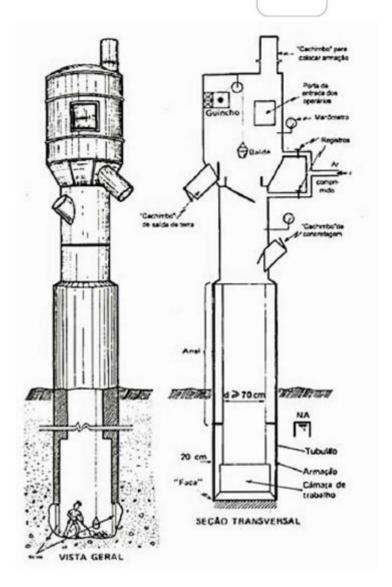
A armadura do fuste deve ser colocada tomando-se o cuidado de não permitir que nesta operação torrões de solo sejam derrubados para dentro do tubulão.

d) Concretagem

A concretagem do tubulão deverá ser feita imediatamente após a conclusão de sua escavação.

Em casos excepcionais, nos quais a concretagem não tenha sido feita imediatamente após o término do alargamento e sua inspeção, nova inspeção deve ser feita, removendo-se material solto ou eventual camada amolecida pela exposição ao tempo ou por águas de infiltração.

A concretagem é feita com o concreto simplesmente lançado da superfície, através de funil com comprimento mínimo de 1,5m.


3.2.2 - TUBULÕES A AR COMPRIMIDO

Este tipo de solução é empregado sempre que se pretende executar tubulões abaixo do nível d'água em solos que não se mantêm estáveis sem risco de desmoronamento e não seja possível controlar a água do interior do tubulão.

A escavação do fuste destes tubulões é sempre realizada com auxílio de revestimento que pode ser de concreto ou de aço (perdido ou recuperado).

Adapta-se **um equipamento pneumático** (figura a seguir) que permita a execução a seco dos trabalhos, sob pressão conveniente de ar comprimido.

A pressão máxima de ar comprimido empregada é da ordem de 3 atm (0,3 MPa), razão pela qual os tubulões pneumáticos têm a sua profundidade limitada a cerca de 30 m abaixo do nível da água.

a) Trabalho sob ar comprimido

Só se admitem trabalhos sob pressões superiores a 0,15 MPa quando as seguintes providências forem tomadas:

- a) equipe permanente de socorro médico à disposição na obra;
- b) câmara de descompressão equipada disponível na obra;
- c) compressores e reservatórios de ar comprimido de reserva;
- d) renovação de ar garantida, sendo o ar injetado em condições satisfatórias para o trabalho humano.

b) Escavação

Inicialmente deve ser concretado o primeiro segmento ou aprumado o revestimento metálico diretamente sobre a superfície do terreno ou em uma escavação preliminar de dimensões maiores que o diâmetro do revestimento (poço primário).

A sequência deve ser feita com a concretagem ou soldagem sucessiva dos segmentos metálicos de revestimento à medida que a escavação manual vai sendo executada. Revestimentos de concreto só podem ser introduzidos no terreno depois que o concreto estiver com resistência suficiente para suportar a escavação.

Quando o nível d'água for atingido, deverá ser instalada no topo da camisa a campânula de ar comprimido o que permite a execução a seco dos trabalhos. Para camisas de concreto, a aplicação da pressão de ar comprimido só pode ser feita quando o concreto atingir a resistência especificada em projeto.

Deve-se evitar a aplicação de pressão excessiva para eliminar água eventualmente acumulada no tubulão.

c) Alargamento da base

Atingida a cota prevista para a implantação da camisa abre-se a base, que é escavada manualmente. Durante esta operação, a camisa deve ser escorada de modo a evitar sua descida.

Antes da concretagem, o material de apoio das bases deverá ser inspecionado por engenheiro que confirmará *in loco* a capacidade suporte do material, autorizando a concretagem. Esta inspeção poderá ser feita com penetrômetro de barra manual.

d) Colocação da armadura

A armadura de ligação fuste-base é colocada pela campânula e montada no interior do tubulão, devendo ser projetada de modo a permitir a concretagem adequada da base, deixando-se aberturas na armadura de pelo menos 30 cm x 30 cm.

e) Concretagem

Em obras dentro d'água a camisa pode ser concretada sobre estrutura provisória e descida até o terreno com auxílio de equipamento, ou concretada em terra e transportada para o local de implantação. O mesmo procedimento pode ser adotado para camisas metálicas.

Em casos especiais, principalmente em obras em que se passa diretamente da água para rocha, a camisa de concreto pode ser confeccionada com a forma e dimensão da base. Neste caso devem ser previstos recursos que assegurem a ligação ou vedação de todo o perímetro da base com a superfície da rocha, a fim de evitar fuga ou lavagem do concreto.

Sempre que a concretagem não for feita imediatamente após o término do alargamento e sua inspeção, nova inspeção deve ser feita, limpando-se cuidadosamente o fundo da base e removendo-se a camada eventualmente amolecida pela exposição ao tempo ou por água de infiltração.

O concreto é lançado através do cachimbo de concretagem da campânula, devendo-se planejar cuidadosamente esta operação de forma a não interrompê-la antes do previsto.

O concreto é lançado sob ar comprimido, no mínimo até uma altura que impeça o seu levantamento pelo empuxo hidrostático.

e.1) Tubulões revestidos com camisa de concreto

Caso durante as operações de instalação das peças da camisa de concreto seja atingido o lençol d'água do terreno e não seja possível esgotá-lo com bombas, deve ser adaptado ao tubulão um equipamento pneumático que permita a execução a seco dos trabalhos, sob pressão conveniente de ar comprimido.

A camisa é concretada por trechos sobre a superfície do terreno (ou em escavação preliminar) e introduzida no terreno por escavação interna. Depois de introduzido no terreno um elemento, concreta-se o seguinte, e assim por diante, até se atingir o comprimento final previsto.

A armadura necessária pode ser colocada totalmente na camisa ou parte nela e parte no núcleo que pode ser concretado parcialmente.

Quando o tubulão for escavado com uso de ar comprimido, a armadura transversal (estribos) deve ser calculada considerando-se uma pressão igual a 1,5 vezes a máxima pressão de trabalho prevista, desprezando-se empuxos externos de solo e água.

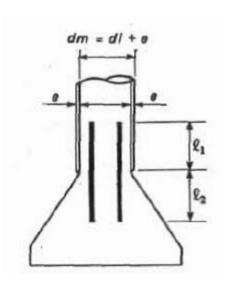
Em casos especiais, principalmente em obras em que se passa diretamente da água para rocha, as camisas podem ser já confeccionadas com alargamento de modo a facilitar a execução da base alargada.

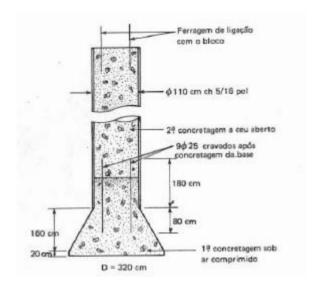
e.2) Tubulões revestidos com camisa de aço

A camisa de aço é utilizada do mesmo modo que a camisa de concreto, a fim de manter aberto o furo e garantir a integridade do fuste do tubulão. Ela pode ser introduzida no terreno por cravação com bate-estacas, por vibração ou através de equipamento especial que imprima ao tubo um movimento de vai-e-vem, simultâneo a uma força de cima para baixo.

A escavação interna, manual ou mecânica, pode ser feita à medida da penetração do tubo ou de uma só vez, quando completada a sua cravação.

Quando assim previsto, pode-se executar um alargamento da base; em seguida o tubulão é concretado, o qual pode ser executado manualmente sob ar comprimido ou não.

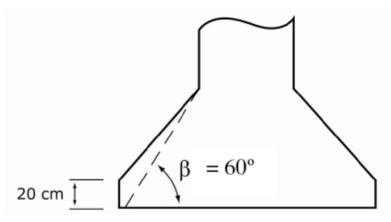

No caso de uso de ar comprimido, a camisa deve ser ancorada ou receber contrapeso de modo a evitar sua subida.


A camisa metálica, no caso de não ter sido considerada no dimensionamento estrutural do tubulão, pode ser recuperada à medida da concretagem, ou posteriormente. Nestes casos, a peça deve ser armada em todo o comprimento, inclusive a base, com taxa não inferior a 0,5% da seção necessária.

Se a camisa de aço permanecer totalmente enterrada, pode-se considerar a sua seção transversal como armadura longitudinal, descontando-se 1,5 mm de espessura caso haja eventual corrosão.

Normalmente, a espessura mínima da camisa é de 1/4" para tubulões com diâmetro ≤ 100 cm e 5/16" para tubulões com diâmetro > 100 cm.

No caso de a camisa metálica ser considerada no dimensionamento do tubulão, há necessidade de colocar armadura de transição entre a base a o fuste, a qual é cravada na base logo após a sua concretagem.



f) Demais Considerações

Os tubulões devem ser dimensionados de maneira que as bases não tenham alturas superiores a 1,8 m. Para tubulões a ar comprimido as bases poderão ter alturas de até 3 m, desde que as condições do maciço permitam ou forem tomadas medidas para garantir a estabilidade da base durante sua abertura.

Havendo base alargada, esta deve ter a forma de tronco de cone (com base circular ou de falsa elipse), superposto a um cilindro de no mínimo 20 cm de altura, denominado rodapé, conforme figura a seguir:

Nos tubulões revestidos despreza-se a força de atrito entre o fuste e o solo, sendo a carga do pilar transmitida ao solo integralmente pela base.

Se o tubulão for de camisa de concreto, o dimensionamento do fuste será feito de maneira análoga ao cálculo para um pilar, dispensando-se a verificação da flambagem quando o tubulão for totalmente enterrado. Em regra, a armadura necessária é colocada na camisa de concreto.

Tendo em vista o trabalho sob ar comprimido, os estribos devem ser calculados para resistir uma pressão 30% maior que a pressão de trabalho, admitindo-se que não exista pressão externa de terra ou água.

Os tubulões devem ser dimensionados de maneira a evitar alturas de base superiores a 2 m. Em casos excepcionais, devidamente justificados, admitem-se alturas maiores.

Deve-se evitar que entre o término da execução do alargamento da base de um tubulão e sua concretagem decorra tempo superior a 24 h.

Tubulões sujeitos apenas a esforços de compressão não precisam de ferragem de ligação com o bloco de coroamento. Em qualquer caso, deve ser garantida a transferência adequada da carga do pilar para o tubulão.

Sempre que uma estaca ou tubulão apresentar desvio angular em relação à posição projetada, deve ser feita verificação de estabilidade, **tolerando-se**, sem medidas corretivas, **um desvio de 1:100**.

3.3 - CAIXÃO

Elemento de fundação profunda de forma prismática, **concretado na superfície** e instalado por escavação interna. Na sua instalação pode-se usar ou não ar comprimido e sua base pode ser alargada ou não.

3.4 – Preparo da cabeça e ligação com o bloco de coroamento

a) Estacas de concreto ou argamassa

No caso de estacas de concreto ou com argamassa inadequados abaixo da cota de arrasamento ou estacas cujo topo resulte abaixo da cota de arrasamento prevista, deve-se fazer a demolição do comprimento e recompô-lo até a cota de arrasamento.

O material a ser utilizado na recomposição das estacas deve apresentar resistência não inferior ao da estaca.

a.1) Estacas Pré-Moldadas

Na demolição devem ser utilizados ponteiros trabalhando com pequena inclinação, para cima, em relação à horizontal para estacas cuja área seja inferior a 380 cm². O uso de marteletes leves (Potência <1000 Watts) é permitido para seções de 380 cm² a 900 cm². O uso de marteletes maiores fica limitado a estacas cuja área seja superior a 900 cm². O acerto final do topo das estacas demolidas deverá ser sempre efetuado com o uso de ponteiros ou ferramenta de corte apropriada.

a.2) Estacas Broca, Hélice Contínua e de Deslocamento, Strauss, Franki e Raiz

Na demolição podem ser utilizados ponteiros ou marteletes leves (Potência <1000 Watts) para seções de até 900 cm². O uso de marteletes maiores fica limitado a estacas cuja seção seja superior a 900 cm². O acerto final do topo das estacas demolidas deverá ser sempre efetuado com o uso de ponteiros ou ferramenta de corte apropriada.

a.3) Micro Estacas

Na demolição podem ser utilizados ponteiros ou marteletes leves (Potência <1000 Watts).

b) Estacas metálicas ou de aço

Deve ser cortado o trecho danificado durante a cravação ou excesso em relação à cota de arrasamento, recompondo-se, quando necessário, o trecho de estaca até esta cota, ou adaptando-se o bloco.

O sistema de transferência dos esforços (de compressão, horizontais, de tração e momentos) do bloco de coroamento para as estacas metálicas deverá ser estudado e detalhado juntamente com o projetista da estrutura, podendo ser através de chapas, fretagem, solda de vergalhões para aumento de aderência etc.

c) Estacas de madeira

Deve ser cortado o trecho danificado durante a cravação ou o excesso em relação à cota de arrasamento.

Caso a nova cota de topo esteja abaixo da cota de arrasamento prevista, deve-se fazer uma emenda que resista a todas as solicitações.

4 – Outras Considerações

Fica vetada, em obras urbanas, qualquer redução de cargas em decorrência de efeitos de subpressão.

A fundação situada em cota mais baixa deve ser executada em primeiro lugar, a não ser que se tomem cuidados especiais.

Quando não se dispõe do cálculo estrutural, pode-se estimar a ordem de grandeza das cargas da fundação a partir do porte da obra. Assim, para estruturas em concreto armado destinadas a moradias e escritórios, pode-se adotar a carga média de 12 kPa/andar, ou seja, 1.200 kgf/m²/andar.

4.1 – EFEITO DE GRUPO DE ESTACAS OU TUBULÕES

Processo de interação das diversas estacas ou tubulões que constituem uma fundação, ao transmitirem ao solo as cargas que lhes são aplicadas.

4.2 - ESTACAS EM GRUPO

Quando as estacas fazem parte de grupos, devem-se considerar os efeitos desta execução sobre o solo, a saber, seu levantamento e deslocamento lateral, e suas consequências sobre as estacas já executadas.

Alguns tipos de solos, particularmente os aterros e as areias fofas, são compactados pela cravação das estacas e a sequência de execução destas estacas, em um grupo, deve evitar a formação de um bloco de solo compactado capaz de impedir a execução das demais estacas.

Havendo necessidade de atravessar camadas resistentes, pode-se recorrer à perfuração (solos argilosos) ou à lançagem (solos arenosos), tendo-se o cuidado de não descalçar as estacas já executadas. Em qualquer caso, a sequência de execução deve ser do centro do grupo para a periferia, ou de um bordo em direção ao outro.

4.3 - SOLOS EXPANSIVOS

São aqueles que, por sua composição mineralógica, **aumentam de volume** quando há um **aumento do teor de umidade**. Nestes solos não se pode deixar de levar em conta o fato de que, quando a pressão de expansão ultrapassa a pressão atuante, podem ocorrer deslocamentos para cima.

4.4 - SOLOS COLAPSÍVEIS

Solos de **elevada porosidade**, não saturados, sujeitos a **colapso por encharcamento**.

4.5 - ATRITO LATERAL

O atrito lateral é considerado positivo no trecho do fuste da estaca ou tubulão ao longo do qual o elemento de fundação tende a recalcar mais que o terreno circundante.

O atrito lateral é considerado negativo no trecho em que o recalque do solo é maior que o da estaca ou tubulão. Este fenômeno ocorre no caso de o solo estar em processo de adensamento, provocado pelo peso próprio ou por sobrecargas lançadas na superfície, rebaixamento de lençol d'água, amolgamento decorrente de execução de estaqueamento, etc.

Considera-se **ponto neutro** a profundidade da **seção** da estaca onde ocorre a **mudança do atrito lateral de negativo para positivo**, ou seja, onde o recalque da camada compressível é igual ao recalque da estaca.

Podem-se utilizar recursos (por exemplo, pintura betuminosa especial), visando diminuir os efeitos do atrito negativo.

5 – QUESTÕES COMENTADAS

Pessoal, todas as questões apresentadas nesta aula serão comentadas. Nesta aula demonstrativa deixo as questões abaixo comentadas para que vocês saibam como será o nosso curso. As demais questões apresentadas serão comentadas no início da próxima aula.

(34 - COPERGÁS/2011 - FCC)

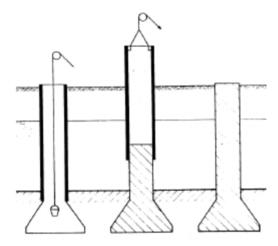
Brocas são dispositivos de fundação executados in loco, sem molde, por perfuração no terreno com o auxílio de um trado, sendo o furo posteriormente preenchido com o concreto apiloado. NÃO se inclui, entre as características das brocas, a

- (A) utilização de concreto fabricado in situ.
- (B) baixa capacidade de carga.
- (C) escavação unicamente acima do lençol freático.
- (D) garantia de verticalidade.
- (E) perfuração por meio da rotação e compressão do tubo.

Comentários

A estaca broca é um tipo de fundação profunda executada por perfuração com trado manual e posterior concretagem, sempre acima do lençol freático, ou seja, é uma estaca escavada mecanicamente (sem emprego de revestimento ou de fluido estabilizante).

Em geral, estas estacas não são armadas, utilizando-se somente ferros de ligação com o bloco. Quando necessário, a estaca pode ser armada para resistir aos esforços da estrutura.


A perfuração manual restringe a utilização destas estacas a pequenas cargas pela pouca profundidade que se consegue alcançar (da ordem de 6 a 8 m) e também pela não garantia de verticalidade do furo.

Portanto, verifica-se que a garantia da verticalidade não se inclui nas características da estaca broca.

Gabarito: D

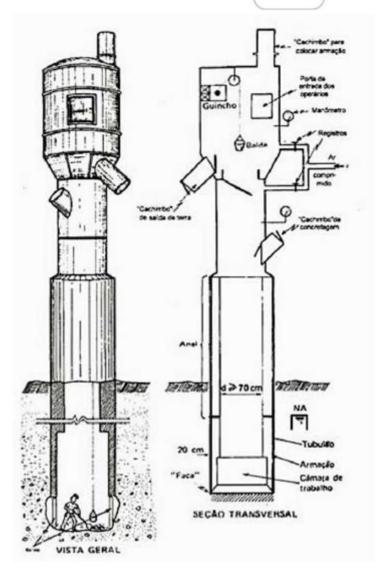
(61 - Defensoria/SP - 2009 - FCC)

Observe a figura.

A fundação representada na figura refere-se a

- (A) tubulão a céu aberto.
- (B) tubulão com ar comprimido.
- (C) sapatas associadas.
- (D) sapatas isoladas.
- (E) estacas raiz.

Comentários

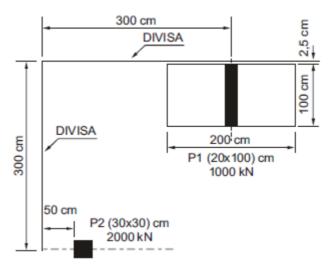

Pessoal, a base alargada já indica tratar-se de tubulão.

O tubulão trata-se de uma fundação profunda escavada manual ou mecanicamente, em que, pelo menos na sua etapa final, há descida de pessoal para alargamento da base ou limpeza do fundo quando não há base.

Neste tipo de fundação as cargas são transmitidas essencialmente pela base a um substrato de maior resistência.

Pode ser feito a céu aberto ou sob ar comprimido (pneumático) e ter ou não base alargada. Pode ser executado com ou sem revestimento, podendo este ser de aço ou de concreto. No caso de revestimento de aço (camisa metálica), este poderá ser perdido ou recuperado.

O tubulão com ar comprimido necessita de um equipamento pneumático, conforme figura a seguir:



Portanto, verifica-se que a figura do comando da questão refere-se ao tubulão a céu aberto.

Gabarito: A

(41 – Assembleia Legislativa/SP – 2010 – FCC)

Considere a seguinte figura:

No dimensionamento da fundação direta para o pilar P2 de dimensões 30 cm × 30 cm, com carga de 2000 kN, a sapata mais indicada, distanciada de 2,5 cm da divisa, é

- (A) retangular com dimensões de lados 125 cm e 320 cm.
- (B) retangular com dimensões de lados 100 cm e 200 cm.
- (C) retangular com dimensões de lados 80 cm e 160 cm.
- (D) quadrada de lado igual a 125 cm.
- (E) quadrada de lado igual a 65 cm.

Comentários

Resistência do terreno:

 δ = 1000 kN/(200 cm x 100 cm) = 0,05 kN/cm² = 5 kgf/cm²

A área mínima da sapata será:

 $A = 2000 \text{ kN/ } 0.05 \text{ kN/cm}^2 = 40.000 \text{ cm}^2$

As dimensões que resultam nesta área são 125 x 320 cm.

Gabarito: A

6 – LISTA DE QUESTÕES

1. (39 - IDECI-CE/2013 - IBFC)

Preencha a lacuna "______ - Elemento de fundação superficial, de concreto armado, dimensionado de modo que as tensões de tração nele resultantes sejam resistidas pelo emprego de armadura especialmente disposta para esse fim."

- a) Sapata.
- b) Estaca.
- c) Repique.
- d) bloco.

2. (36 - COMPESA/2014 - FGV)

Com relação às fundações superficiais, analise as afirmativas a seguir.

- I. As vigas de fundação estão associadas a dois ou mais pilares alinhados.
- II. Uma sapata é dita centrada quando a resultante do carregamento passa pelo centro de gravidade da área da base.
- III. As vigas de equilíbrio são elementos estruturais que ligam a sapata de um pilar na divisa com um pilar interno da obra, fazendo com que a sapata trabalhe com carga excêntrica.

Assinale:

- (A) se somente as afirmativas I e II estiverem corretas.
- (B) se somente as afirmativas II e III estiverem corretas.
- (C) se somente as afirmativas I e III estiverem corretas.
- (D) se somente a afirmativa II estiver correta.
- (E) se somente a afirmativa I estiver correta.

3. (33 – UFG/2008 – UFG)

Segundo a NBR 6122:1996, o elemento de fundação superficial comum a vários pilares, cujos centros, em planta, estejam situados no mesmo alinhamento, é denominado

- (A) viga de fundação.
- (B) sapata associada.
- (C) sapata corrida.
- (D) radier.

4. (32 – TRE-AM/2013 – IBFC)

O elemento construtivo conhecido por sapata, ao contrário dos blocos, não trabalha apenas com a compressão. Elas também são colocadas onde se deve colocar elementos resistentes à flexão/tração. As sapatas ______ são úteis no caso de sustentação de pilares de divisa

ou próximos a obstáculos onde não seja possível fazer com que o centro de gravidade da sapata coincida com o centro de carga do pilar. Assinale a alternativa que completa corretamente a lacuna.

- a) associadas
- b) alavancadas
- c) estruturadas
- d) corridas

5. (32 - CELG-G&T/2014 - UFG)

O elemento de fundação superficial comum a vários pilares, cujos centros, em planta, estejam situados no mesmo alinhamento é denominado

- (A) radier parcial.
- (B) sapata corrida.
- (C) viga de fundação.
- (D) sapata associada.
- (E) grelha linear.

6. (34 - UFG/2008 - UFG)

Segundo a NBR 6118:2003, a espessura média de um bloco de fundação não deve ser inferior a

- (A) 30 cm.
- (B) 25 cm.
- (C) 20 cm.
- (D) 15 cm.

7. (35 – UFG/2008 – UFG)

Uma sapata isolada e quadrada, para suportar um pilar 25 cm x 25 cm com carga de 1,0 MN, sendo a pressão admissível no solo igual a 0,25 MN/m2, deve ter como dimensão mínima do lado a seguinte medida:

- (A) 2,00 m.
- (B) 2,25 m.
- (C) 2,50 m.
- (D) 2,75m.

8. (35 – EBSERH-PR/2015 – IBFC)

Avalie o texto a seguir e assinale a alternativa que seja aderente a ele. É um tipo de fundação de fácil execução e de baixo custo, usada em construções baixas. Pode ser executada com concreto ciclópico ou com concreto armado lançado em valas rasas escavadas manualmente

no terreno (máximo de 50 cm de profundidade). A execução segue o projeto arquitetônico, de acordo com a direção das paredes da edificação.

- a) Sapata amorfa.
- b) Sapata isolada.
- c) Sapata corrida.
- d) Sapata protendida.
- e) Sapata cravada.

9. (38 - IDECI-CE/2013 - IBFC)

A escolha correta de uma solução de fundação deve passar necessariamente por uma criteriosa e econômica análise técnica das várias alternativas. As variáveis que devem ser ponderadas são as seguintes: condições das edificações vizinhas à obra, geotecnia local, viabilidade executiva e existência de mão de obra especializada para a execução da solução definida. Ainda sobre o tema, leia as afirmativas abaixo e assinale a alternativa correta:

- I. fundação superficial (rasa ou direta) Elemento de fundação em que a carga é transmitida ao terreno pelas tensões/pressões distribuídas sob a base da fundação.
- II. fundação profunda Elemento de fundação que transmite a carga ao terreno ou pela base (resistência de ponta) ou por sua superfície lateral (resistência de fuste) ou por uma combinação das duas.
- a) A afirmativa I está correta e a II está incorreta.
- b) A afirmativa I está incorreta e a II está correta.
- c) As afirmativas I e II estão corretas.
- d) As afirmativas I e II estão incorretas.

10. (32 - SEGAS/2013 - FCC)

NÃO é exemplo de fundação direta:

- (A) estaca raiz.
- (B) tubulão.
- (C) bloco.
- (D) sapata.
- (E) radier

11. (35 – Pref. Goiânia/2012 – UFG)

Quando a sapata dimensionada para um pilar ultrapassar a linha limítrofe do terreno e existir um outro pilar próximo, pode-se projetar uma única sapata ligando estes pilares. Este elemento de fundação é denominado sapata

- (A) de divisa.
- (B) corrida.

- (C) excêntrica.
- (D) associada.

12. (31 - CELG-G&T/2014 - UFG)

A estaca que se caracteriza por ser escavada por perfuratriz, com injeção e revestida em pelo menos uma parte de seu comprimento é denominada estaca

- (A) mega.
- (B) hélice contínua.
- (C) Franki.
- (D) raiz.
- (E) Strauss.

13. (29 - IF-GO/2013 - UFG)

Existem casos em que a carga de uma estaca é predominantemente suportada pelo seu fuste. Como exemplo desses casos, têm-se as estacas

- (A) de ponta.
- (B) flutuante.
- (C) Franki.
- (D) Strauss.

14. (33 – TRE-AM/2013 – IBFC)

As lacunas apresentadas a seguir devem ser preenchidas respectivamente conforme descrito na alternativa: _______ - são elementos de fundação profunda construídos com o auxílio de ferramentas ou equipamentos sem que haja descida de operário em qualquer fase de execução (cravação a percussão, prensagem, vibração, ou por escavação), podendo ser constituído de madeira, aço ou concreto. ______ - são elementos cilíndricos de fundação profunda que, ao menos na sua fase final, ocorre a descida de um operário, podendo ser executado a céu aberto ou a ar comprimido, e ter ou não, a base alargada. ______ - são elementos de fundação de forma prismática, concretados na superfície do terreno, e instalados por escavação interna, podendo-se ainda na sua instalação usar, ou não, ar comprimido, e ter a sua base alargada ou não.

- a) Tubulões, Caixões, Estacas.
- b) Caixões, Tubulões, Estacas.
- c) Tubulões, Estacas, Caixões.
- d) Estacas, Tubulões, Caixões

15.46)

Com relação a fundações profundas, o tipo de dispositivo que apresenta elevada capacidade de suporte, grande rapidez de execução, pequena perturbação no processo de cravação refere-se a:

- a) estaca de madeira
- b) estaca metálica
- c) estaca de concreto
- d) sapata

16. (31 - IF-GO/2013 - UFG)

Ao se projetar as fundações para um edifício optou-se pela utilização de fundações superficiais e, ao final do dimensionamento, verificou-se que a área de sapatas correspondia a, aproximadamente, ¾ da área da construção. Optou-se, então, pela utilização de um único elemento estrutural de fundação, abrangendo todos os pilares. Esse elemento é denominado:

- (A) sapata associada.
- (B) radier.
- (C) sapata corrida.
- (D) caixão.

17. (48 - IF-GO/2010 - UFG)

O elemento de fundação superficial que abrange todos os pilares da obra ou carregamentos distribuídos é denominado

- (A) sapata associada.
- (B) sapata corrida.
- (C) bloco.
- (D) radier.

18. (43 – Metrô/2009 – FCC)

Tubulões; Estacas Strauss, Franki, Raiz, Barrete/Estação; e Sapatas, são, respectivamente, exemplos de fundações

- (A) diretas profundas, sapatas isoladas e viga baldrame.
- (B) estacas profundas, estacas rasas e indiretas a céu aberto.
- (C) diretas profundas, indiretas com estacas de concreto moldadas in loco e diretas rasas.
- (D) sapatas associadas, rasas moldadas in loco e diretas profundas.
- (E) pré-moldadas, rasas indiretas e moldadas sob pressão.

19. (29 - TJ-GO/2014 - FGV)

O conjunto de curvas ou superfícies obtidas ligando-se os pontos de mesma pressão vertical em um solo é:

- (A) gráfico de tensões;
- (B) curvas de interação;
- (C) distribuição de cargas;
- (D) linhas de influência;
- (E) bulbo de pressões.

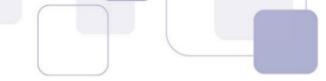
20. (33 - Pref. Goiânia/2012 - UFG)

Ao se projetar as fundações de um edifício, como o terreno superficial era de boa qualidade, adotou-se fundações sobre sapatas, entretanto, para reduzir os recalques, foi projetada a colocação de duas estacas sob cada sapata. Este tipo de fundação mista é denominada

- (A) sapata estaqueada
- (B) estaca-T
- (C) radier estaqueado
- (D) estapata

21. (69 - TCE/MG - 2007 - FCC)

Uma edificação é apoiada sobre sapatas em solo argiloso normalmente adensado. Com o carregamento proveniente do peso da estrutura iniciou-se um processo de recalque por adensamento da argila. Como as sapatas têm dimensões e tensões de trabalho uniformes, espera-se que


- (A) as sapatas periféricas apresentem recalques maiores que as centrais.
- (B) as sapatas centrais não sofram nenhum recalque.
- (C) os recalques sofridos pelas sapatas sejam uniformes.
- (D) não ocorram recalques.
- (E) as sapatas periféricas apresentem recalques menores que as centrais.

22. (33 – Refap/2007 – Cesgranrio)

Na execução de fundações, o nível em que deve ser deixado o topo da estaca, demolindo-se o excesso ou completando-o, se for o caso, e que é definido de modo a deixar que a estaca e sua armadura penetrem no bloco com um comprimento que garanta a transferência de esforços do bloco à estaca, é denominado cota de:

- (A) equilíbrio.
- (B) caracterização.
- (C) arrasamento.
- (D) integração.
- (E) repique.

23. (31 - Fundação Casa/2013 - VUNESP)

A medida de penetração permanente de uma estaca, causada pela aplicação de um golpe de martelo ou pilão sempre relacionada com a energia de cravação, é denominada

- (A) cota de arrasamento.
- (B) nega.
- (C) repique.
- (D) tensão admissível.
- (E) carga admissível de uma estaca


24. (56 – Petrobras Distribuidora/2010 – Cesgranrio)

Qual a menor profundidade, em metros, em que uma fundação superficial pode estar assente em uma divisa com um terreno vizinho, sabendo-se que ela não está sobre rocha?

(A) 0,50 (B) 0,60 (C) 0,80 (D) 1,00 (E) 1,50

(Liquigas/2013 - Cesgranrio)

Para responder às questões de 31, 32 e 33, que estão baseadas na NBR 6122:2010 (Projeto e execução de fundações), considere os dados e croquis a seguir, que representam parte das fundações de uma obra, cujo solo é pouco resistente.

Considerando-se que a sapata SP1 tem base com dimensões maiores que 1,0 m, a cota z1 vale, em m, no mínimo,

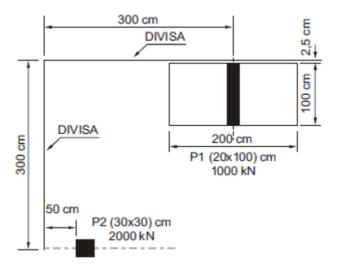
0,50

(B) 0,70

(C) 1,00

(D) 1,50

(E) 2,00


26. (32 - Liquigas/2013 - Cesgranrio)

Considerando-se que a cota z1 se refere à medida da profundidade do fundo das sapatas SP1 e SP2, as escavações para a execução dessas sapatas deverão ter profundidade de z1 + e1, onde e1 é denominada espessura de lastro e vale, em cm, no mínimo,

(A) 3 (B) 5 (C) 7 (D) 8 (E) 10

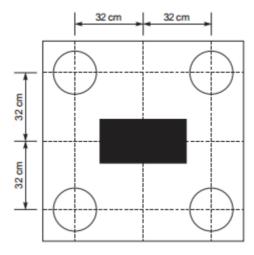
27. (41 – Assembleia Legislativa/SP – 2010 – FCC)

Considere a seguinte figura:

No dimensionamento da fundação direta para o pilar P2 de dimensões 30 cm × 30 cm, com carga de 2000 kN, a sapata mais indicada, distanciada de 2,5 cm da divisa, é

- (A) retangular com dimensões de lados 125 cm e 320 cm.
- (B) retangular com dimensões de lados 100 cm e 200 cm.
- (C) retangular com dimensões de lados 80 cm e 160 cm.
- (D) quadrada de lado igual a 125 cm.
- (E) quadrada de lado igual a 65 cm.

28. (36 - MPE-MA/2013 - FCC)


A escolha mais econômica para a fundação do tipo sapata de um pilar de 40 cm \times 40 cm, com carga de 2 880 kN e tensão admissível do solo de 0,32 MPa é

- (A) quadrada, de lado igual a 300 cm.
- (B) quadrada, de lado igual a 9 m.
- (C) quadrada, de lado igual a 90 cm.
- (D) retangular, com balanços iguais e lados de dimensões 2,88 m e 3,2 m.

29. (37 - MPE-MA/2013 - FCC)

Considere o pilar abaixo.

Carga do pilar: 2 200 kN

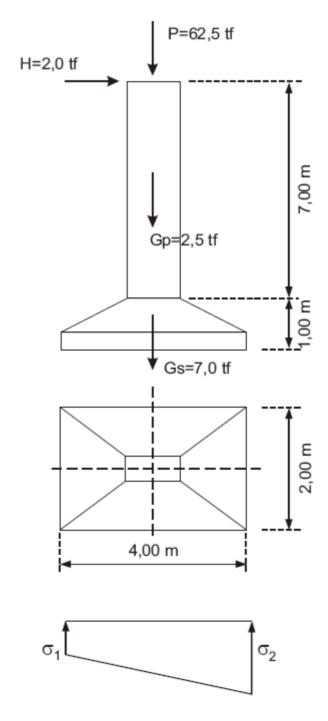
Após a realização de prova de carga sobre placa chegou-se aos valores de 750 kN e 1100 kN para 15 mm de recalque e 47,5 mm (ruptura), respectivamente. Sabendo-se que, o recalque estrutural admissível é de 15 mm, pode-se afirmar que o projeto de estaqueamento do pilar está

- (A) correto, pois a carga admissível é igual a 750 kN.
- (B) correto, pois a carga admissível será de 550 kN.
- (C) errado, pois a carga admissível será de 500 kN.
- (D) errado, pois a carga admissível é de 750 kN.
- (E) errado, pois a carga admissível é de 1 100 kN.

30. (46 - Defensoria/SP - 2009 - FCC)

Considere as seguintes etapas executivas de uma fundação:

- I. escavação;
- II. colocação de um lastro de concreto magro de 5 a 10 cm de espessura;
- III. posicionamento das fôrmas, quando o solo assim o exigir;
- IV. colocação das armaduras;
- V. concretagem;
- VI. execução de cinta de concreto armado;
- VII. aplicação de camada impermeabilizante.


A sequência apresentada refere-se às etapas de execução de uma fundação do tipo:

(A) blocos e alicerces.

- (B) sapata isolada.
- (C) tubulão a céu aberto.
- (D) sapata corrida.
- (E) radier.

31. (45 - TRE/BA - 2003 - FCC)

Na figura abaixo:

As tensões no solo, σ_1 e σ_2 , são, respectivamente, em tf/m2, aproximadamente, (A) -3 e -15

- (C) -9 e -9
- (D) -12 e -9
- (E) -12 e -15

32. (38 - TRE/MS - 2007 - FCC)

Sabendo-se que o solo de apoio das sapatas é constituído de argila rija, a pressão básica a ser adotada (NBR 6122) é, em MPa, de

- (A) 0,10
- (B) 0,20
- (C) 0,25
- (D) 0,30
- (E) 0,40

33. (43 - Sabesp/2012 - FCC)

Na utilização da fórmula de Terzaghi, que permite avaliar a tensão de ruptura do solo sob uma sapata, deve-se empregar

- (A) pressões totais ou efetivas, desde que o solo seja arenoso.
- (B) pressões totais ou efetivas, desde que o solo seja argiloso.
- (C) somente pressões efetivas.
- (D) somente pressões totais.
- (E) pressões totais ou efetivas, independente da condição do solo.

34. (63 - TCE-GO/2014 - FCC)

No projeto de fundações de uma edificação, no dimensionamento de uma sapata para um pilar de dimensões 40 cm ×40 cm, com carga de 7200 kN e tensão admissível do solo igual a 200 kPa, a sapata mais econômica terá forma quadrada de lado, em metros, igual a

(A) 2. (B) 3. (C) 4. (D) 5. (E) 6.

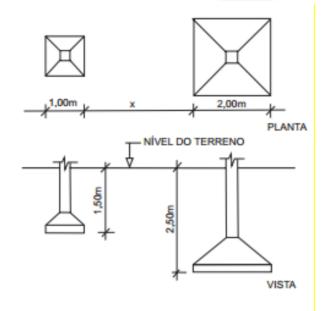
35. (25 - ITESP/2013 - VUNESP)

Fundação superficial de concreto armado e de pequena altura em relação às dimensões da base quadrada (ou retangular, ou circular, ou octogonal). É semiflexível e trabalha a flexão. É

- (A) a sapata.
- (B) a estaca.
- (C) o bloco.
- (D) o tubulão.
- (E) o caixão

No dimensionamento geométrico de fundações superficiais, a área de fundação solicitada por cargas centradas deve ser tal que a pressão transmitida ao terreno, admitida uniformemente distribuída, seja

- (A) maior que a pressão admissível.
- (B) maior que a pressão de ruptura.
- (C) menor que a pressão admissível ou igual a ela.
- (D) menor que a pressão de recalque ou igual a ela.
- (E) menor que a pressão de ruptura ou igual a ela


37. (40 – Petrobras/2006 – Cesgranrio)

A tensão transmitida ao solo por uma sapata quadrada de 3 m de lado, que recebe uma carga centrada de 4.500 kN, é, em MPa, igual a

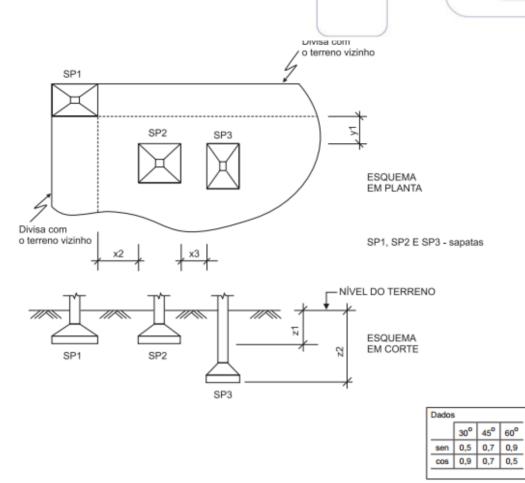
- (A) 0,05
- (B) 0,15
- (C) 0,5
- (D) 1,5
- (E) 5,0

38. (50 - INEA/2008 - Cesgranrio)

Observe o croqui e os dados das duas sapatas abaixo.

Dados:

- · Solo pouco resistente
- Tabela


Ångulo	Tangente	Seno
20°	0,36	0,34
30°	0,58	0,50
45°	1,00	0,71
60°	1,73	0,87
75°	3,73	0,97

Tratando-se de um caso de sapatas próximas, mas em cotas diferentes, o menor valor, segundo a NBR 6122/96 (Projeto e execução de fundações), recomendado para "x", em metros, é

- (A) 0,50
- (B) 1,16
- (C) 1,50
- (D) 1,73
- (E) 3,73

(Liquigas/2013 - Cesgranrio)

Para responder às questões de 31, 32 e 33, que estão baseadas na NBR 6122:2010 (Projeto e execução de fundações), considere os dados e croquis a seguir, que representam parte das fundações de uma obra, cujo solo é pouco resistente.

39.33 -

Considerando-se que z1 atende às condições da norma e sabendo-se que x3 = 2,70 m, o maior valor de z2, em m, vale

- (A) z1 + 0.50
- (B) z1 + 0.90
- (C) z1 + 1,50
- (D) z1 × 1,2
- (E) z1 / 1,5

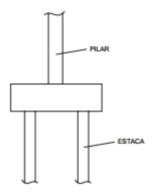
40. (49 - BR Distribuidora/2008 - Cesgranrio)

A NBR 6.122/1996 (Projeto e execução de fundações), no dimensionamento das fundações superficiais feito com o conceito de pressão admissível, estabelece que fator(es) como

- (A) lençol d'água não deve ser considerado.
- (B) recalques admissíveis, definidos pelo projetista da estrutura, devem ser considerados.
- (C) profundidade da fundação não deve ser considerado.
- (D) dimensões e forma dos elementos de fundação não devem ser considerados.
- (E) características da obra, exceto a rigidez da estrutura, devem ser considerados.

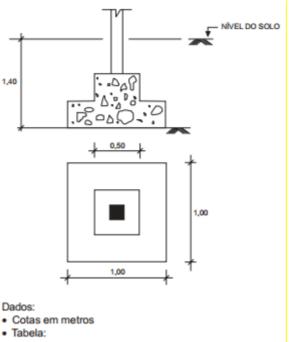
O elemento de fundação superficial de concreto, dimensionado de modo que as tensões de tração nele produzidas possam ser resistidas pelo concreto, sem necessidade de armadura, é o(a)

- (A) radier.
- (B) bloco.
- (C) sapata.
- (D) sapata associada.
- (E) viga de fundação


42. (44 - MPE/SE - 2009 - FCC)

Para trabalhos em cavas de fundação, que devem ser pisadas por pessoas, é indispensável que haja espaço de trabalho com largura mínima de

- (A) 1,6 m.
- (B) 1,2 m.
- (C) 1,0 m.
- (D) 0,8 m.
- (E) 0,5 m.


43. (17 - SEMSA Manaus/2005 - Cesgranrio)

Observe o croqui abaixo.

O elemento que faz a ligação entre o pilar e as estacas, distribuindo convenientemente as cargas, é o (a):

- (A) bloco de coroamento.
- (B) balancim.
- (C) cimbramento.
- (D) cutelo divisor.
- (E) estrutura de fixação.

	Profundidade (m)	Resistência do solo (MPa)
	até 1,00	0,05
-	até 1,30	0,10
	até 1,80	0,15
	até 2,00	0,20

44. (16 - SEMSA Manaus/2005 - Cesgranrio)

Considerando-se os dados fornecidos, a maior carga que o bloco pode suportar, em kN, vale:

(A) 0,15 (B) 10 (C) 50 (D) 100

(E) 150

45. (47 - TRE/BA - 2003 - FCC)

O tipo de fundação direta ou rasa composta por uma única placa de concreto armado, no qual se apóiam todos os pilares e paredes da estrutura, denomina-se

- (A) radier.
- (B) sapata corrida.
- (C) sapata isolada.
- (D) sapata associada.
- (E) baldrame.

46. (60 - IBGE/2010 - Cesgranrio)

Qual dos seguintes tipos de fundação NÃO gera recalques diferenciais?

- (A) Bloco
- (B) Estaca
- (C) Radier
- (D) Sapata

47. (43 - TJ/PI - 2009 - FCC)

Sapata Associada é uma fundação

- (A) rasa, comum a vários pilares, cujos centros em planta não estejam situados num mesmo alinhamento.
- (B) rasa, comum a vários pilares, cujos centros não estejam situados num mesmo plano.
- (C) profunda, sinônimo de Radier.
- (D) rasa, comum a vários pilares, cujos centros em planta estejam situados num mesmo alinhamento.
- (E) profunda, comum a vários pilares, cujos centros em planta estejam situados num mesmo plano.

48. (54 - PMSP/2008 - FCC)

As fundações em blocos corridos e destinadas a suportar cargas provenientes das paredes estruturais podem ser executadas, entre outros, com os seguintes materiais:

- (A) blocos de argila compensada e pedras de silte.
- (B) sapata moldada em pó de pedra e cal hidráulica.
- (C) tijolos sílico-calcáreos e blocos de gesso.
- (D) alvenaria em bloco de concreto e pedra.
- (E) tijolos de argila prensada e argamassa de cal hidráulica.

$$49.(81 - TCE/PI - 2005 - FCC)$$

O coeficiente, ou fator de segurança mínimo, adotado em fundações superficiais é

(A) 3,0 (B) 2,5 (C) 2,0 (D) 1,5 (E) 1

Nos métodos empíricos, pelos quais se chega a uma pressão admissível para uma sapata, baseada em investigações de campo, e onde os valores servem para uma orientação inicial, o valor em Mpa de um solo formado por argilas médias é

- (A) 0,5
- (B) 0,4
- (C) 0,3
- (D) 0,2
- (E) 0,1

51. (40 - TRE/AM - 2003 - FCC)

Quando as sapatas da fundação de um edifício são significativamente grandes, ou seja, uma aproxima-se da outra, normalmente elas se juntarão em uma única denominada

- (A) sapata corrida.
- (B) sapata associada.
- (C) sapata escavada.
- (D) radier.
- (E) tubulão.

52. (49 – Petrobras/2011 – Cesgranrio)

Em um determinado projeto de fundação, há um elemento estrutural que está recebendo cargas de dois pilares e transmitindo-as centradas às fundações. Trata-se de uma

- (A) viga de equilíbrio
- (B) viga de levantamento
- (C) viga de repique
- (D) cinta de levantamento
- (E) cinta de reação

53. (**31** – Petrobras/**2012** – Cesgranrio)

Uma determinada fundação superficial tem base quadrada de lado 1,50 m e está solicitada por carga excêntrica. De acordo com a NBR 6122:2010 (Projeto e execução de fundações), no dimensionamento dessa fundação, a área comprimida, em m2, deve ser de, no mínimo,

- (A) 0,75
- (B) 1,13
- (C) 1,50
- (D) 1,69
- (E) 2,25

54. (43 – Pref. Cubatão/2012 – VUNESP)

Elemento de fundação profunda executado inteiramente com auxílio de equipamentos ou ferramentas, sem que, em qualquer fase de sua execução, haja descida de operário. Os materiais empregados podem ser: madeira, aço, concreto pré-moldado, concreto moldado in situou mistos. Esse elemento é a(o)

- (A) tubulão.
- (B) sapata.
- (C) radier.
- (D) bloco.
- (E) estaca.

55. (39 – Petrobras/2006 – Cesgranrio)

É classificada como escavada, uma estaca

- (A) tipo Strauss.
- (B) tipo Franki.
- (C) metálica.
- (D) madeira.
- (E) pré-moldada de concreto

56. (34 – Petrobras/2012 – Cesgranrio)

De acordo com a NBR 6122:2010 (Projeto e execução de fundações), para especificar o material em obras onde serão executadas estacas raiz, deve-se considerar que seu preenchimento é feito com

- (A) concreto, com brita 2, no máximo
- (B) concreto, com brita 3, no máximo
- (C) concreto, com brita 4, no máximo
- (D) argamassa de cimento, areia e brita 1 e/ou 2
- (E) argamassa de cimento, areia e/ou pedrisco

57. (34 - COPERGÁS/2011 - FCC)

Brocas são dispositivos de fundação executados in loco, sem molde, por perfuração no terreno com o auxílio de um trado, sendo o furo posteriormente preenchido com o concreto apiloado. NÃO se inclui, entre as características das brocas, a

- (A) utilização de concreto fabricado in situ.
- (B) baixa capacidade de carga.
- (C) escavação unicamente acima do lençol freático.
- (D) garantia de verticalidade.
- (E) perfuração por meio da rotação e compressão do tubo.

58. (68 - TCE/GO - 2009 - FCC)

Considere as seguintes afirmações sobre as estacas Strauss:

- I. Não provocam vibrações, portanto, evitam danos às construções vizinhas, mesmo estas se encontrando em condições precárias.
- II. Quando executadas uma ao lado da outra (estacas justapostas) servem como cortina de contenção para a execução de subsolos, quando adequadamente armadas.
- III. Podem ser executadas abaixo do nível da água, principalmente no caso de solos arenosos.

Está correto o que se afirma APENAS em

- (A) I.
- (B) II.
- (C) III.

- (D) I e II.
- (E) I e III.

59. (44 - MPE-AM/2013 - FCC)

Pelo método construtivo da estaca Strauss, NÃO é recomendável seu uso em

- (A) solos coesivos sem lençol freático alto.
- (B) solos pouco coesivos e sem lençol freático, com uso de tubo de revestimento.
- (C) solos altamente coesivos e sem lençol freático com a possibilidade de executar a estaca sem revestimento.
- (D) solo pouco coesivo e com lençol freático, com o uso de tubo de revestimento.
- (E) terrenos que propiciam comprimentos variáveis de cravação

60. (46 - MPU/2004 - ESAF)

As fundações indiretas do tipo estacas possuem características próprias, apresentando vantagens e desvantagens, o que nos permite optar por uma ou outra solução para a construção de edifícios, de acordo com cada caso. Considerando-se a estaca do tipo Strauss, é correto afirmar que:

- a) sua maior vantagem é a viabilidade de execução em terrenos alagados, tornando-se barata e eficiente para este caso.
- b) sua maior desvantagem é a vibração que pode vir a causar danos aos terrenos e edifícios vizinhos.
- c) sua principal desvantagem é a necessidade de macaco hidráulico para a cravação.
- d) não é recomendado o seu uso abaixo do nível de água, principalmente se o solo for arenoso.
- e) é executada com o uso de lama bentonítica, sendo indicada somente para cargas elevadas em terrenos argilosos.

61. (51 - UFTM/2013 - VUNESP)

A estaca Strauss é uma estaca de concreto

- (A) pré-moldada protendida.
- (B) pré-moldada vibrada.
- (C) pré-moldada de reação.
- (D) moldada in loco com camisa recuperada.
- (E) moldada in loco com camisa perdida.

62. (100 - MPE/SE - 2009 - FCC)

Constitui uma das desvantagens da utilização das estacas tipo Franki:

(A) a cravação com alta vibração.

- (B) o lançamento do concreto molhado.
- (C) a colocação de armadura não longitudinal.
- (D) a baixa aderência ao solo.
- (E) a baixa capacidade de carga.

63. (46 - SEGAS/2013 - FCC)

A estaca hélice contínua é uma estaca de concreto moldado in loco, executada por meio de trado contínuo e injeção de concreto através da haste central do trado simultaneamente a sua retirada do terreno. Representa uma característica deste tipo de fundação:

- (A) a utilização de lama bentonítica na escavação.
- (B) os terrenos podem ser de relevo acidentado.
- (C) o nível de vibração elevado provocado durante a escavação.
- (D) o custo baixo de implantação.
- (E) a adaptabilidade na maioria dos tipos de terreno, exceto na presença de matacões e rochas

64. (52 - Metrô/2009 - FCC)

Uma estaca barrete é

- (A) executada com uma máquina denominada clamshell.
- (B) para uso no processo de escavação à água, o que gera muito barro, daí o nome.
- (C) de pequena dimensão, exatamente para servir de reforço em edificações pré-existentes.
- (D) executada com um bate-estacas de baixa capacidade.
- (E) para uso de concreto plasticamente coeso, semelhante ao barro.

65. (42 - TRF3/2007 - FCC)

Durante as fases de sondagem e de fundação de um edifício, foi utilizado um material chamado bentonita. Com relação a esse material, considere:

- I. A bentonita é uma argila da família das montmorilonitas cuja característica principal é a propriedade da tixotropia, ou seja, um comportamento fluido quando agitada, mas capaz de formar um gel quando em repouso.
- II. As principais funções da lama durante a escavação: são suportar a face da escavação, formação de um selo para impedir a perda da lama no solo e deixar em suspensão as partículas sólidas do solo escavado, evitando que se depositem no fundo da escavação.
- III. Um dos principais inimigos das capacidades tixotrópicas da bentonita é o acúmulo de sais, como o cloreto de sódio, na solução da lama. Esses sais podem, em concentrações elevadas, fazer com que as propriedades de sustentação e vedação se percam completamente.

Está correto o que se afirma em

(A) I, apenas.

- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

66. (34 - TJ/PI - 2009 - FCC)

Sobre estacas moldadas "in loco", considere:

- I. Método que consiste em cravar um tubo de aço, batendo com o maço de bate-estacas, em um tampão de concreto ou areia colocado no fundo do tubo. O tubo vai descendo forçado pelo atrito do tampão no interior deste até a profundidade desejada.
- II. Consiste na cravação de um conjunto de tubos metálicos, de diâmetros consecutivos e decrescentes. A escavação é feita após a cravação de cada tubo, sucessivamente. Os tubos são retirados com a progressão da concretagem, podendo ser executada abaixo do nível da água, desde que abaixo deste haja uma camada de argila em que o tubo possa apoiar-se, permitindo o término da escavação antes que a água atravesse a camada de argila.
- III. É um tipo confeccionado no próprio local onde será empregada. O método consiste em enterrar um tubo de aço no solo com um pequeno bate-estaca. Enterrado o tubo, este vai sendo retirado ao mesmo tempo em que se vai enchendo o orifício com concreto, o qual é batido com um pilão para melhor adensamento.

As descrições apresentadas referem-se, respectivamente, às estacas

- (A) Straus, tubulão e hélice contínua.
- (B) tubulão tipo Chigago, hélice contínua e Franki.
- (C) Franki, tubulão tipo Gow e Straus.
- (D) raiz, estaca premoldada de concreto e tubulão tipo Chicago.
- (E) hélice contínua, raiz e Straus.

67. (32 - TRE/SE - 2007 - FCC)

Na cravação de estacas pré-moldadas, o controle executivo NÃO aplicável é:

- (A) nega.
- (B) repique elástico.
- (C) altura de queda do martelo.
- (D) tempo de lavagem.
- (E) comprimento cravado.

68. (52 - Metrô/SP - 2012 - FCC)

Estacas pré-fabricadas de concreto são ideais para transpor camadas extensas de solo mole e não possuem restrição quanto ao uso abaixo do lençol freático. Seu processo construtivo

permite grande controle tecnológico do material e da execução. Com relação às estacas prémoldadas, considere:

- I. As estacas podem ser de concreto armado ou protendido.
- II. A energia de cravação depende do peso do martelo, do peso da estaca e da altura de queda do martelo.
- III. Após a cravação das estacas pré-moldadas atingir a profundidade desejada, não é necessário verificar a nega, em função do seu processo executivo.
- IV. A capacidade de carga da estaca pré-moldada é igual a sua capacidade estrutural.

Está correto o que consta em

- (A) III e IV, apenas.
- (B) II e III, apenas.
- (C) I e II, apenas.
- (D) I e IV, apenas.
- (E) I, II, III e IV.

69. (29 - Petrobras/2012 - Cesgranrio)

Nos procedimentos executivos das estacas pré-moldadas de concreto, é permitido o aproveitamento das sobras de estacas, resultantes da diferença entre a estaca efetivamente levantada e a arrasada. Uma das exigências da NBR 6122:2010 (Projeto e execução de fundações) para esse aproveitamento refere-se ao comprimento da sobra, que, em metros, deve ser de, no mínimo,

- (A) 1,0
- (B) 1,5
- (C) 2,0
- (D) 2,5
- (E) 3.0

70. (19 - Caixa/2012 - Cesgranrio)

Em uma obra, serão cravadas 200 estacas pré-moldadas de concreto. De acordo com a NBR 6122:2010 (Projeto e execução de fundações), será necessário elaborar o diagrama de cravação

- (A) de 100 estacas, no mínimo
- (B) de 120 estacas, no mínimo
- (C) de 150 estacas, no mínimo
- (D) de 180 estacas, no mínimo
- (E) das 200 estacas

71. (58 – Assembleia BA/2014 – FGV)

Com relação às estacas premoldadas, assinale V para a afirmativa verdadeira e F para a falsa.

- () São estacas moldadas em canteiro ou usina.
- () Uma vantagem é a segurança que oferecem na passagem através de camadas de solo muito mole.
- () Podem ser descarregadas manualmente, com a utilização de pranchas especiais e cordas.

As afirmativas são, respectivamente,

- (A) V, V e V.
- (B) V, V e F.
- (C) F, V e F.
- (D) F, F e V.
- (E) F, F e F.

72. (45 - MPE/SE-2009 - FCC)

A estaca cravada por meio de macaco hidráulico, apoiado sobre estrutura existente ou em construção ou em cargueira, especialmente construída para tal, que não produz impacto ou vibração, é denominada estaca

- (A) Broca.
- (B) Franki.
- (C) Mega.
- (D) Strauss.
- (E) Raiz.

73.(40 - TRE/MS - 2007 - FCC)

O tipo de fundação que NÃO se aplica na construção de uma edificação nova é

- (A) estaca tipo "Strauss".
- (B) sapata corrida.
- (C) estaca Mega.
- (D) estaca pré-moldada.
- (E) broca.

74. (39 - TRF4/2007 - FCC)

No que se refere ao emprego de tubulões a céu aberto, é INCORRETO afirmar:

- (A) Seu uso é muito limitado na presença de lençol freático.
- (B) Seu custo de mobilização e desmobilização é menor, em relação aos bate-estacas e outros equipamentos.

- (C) As vibrações e ruídos produzidos são de baixa intensidade.
- (D) O comportamento do solo pode ser acompanhado pelos engenheiros de fundações.
- (E) Seu diâmetro e seu comprimento podem ser modificados durante a escavação.

75. (48 - TJ/SE - 2009 - FCC)

As principais técnicas de execução de tubulões são

- (A) pré-moldados e moldados in-loco.
- (B) campanulares e pré-armados.
- (C) escavados e drenados.
- (D) a céu aberto e a ar-comprimido.
- (E) estáveis e instáveis.

76. (48 - TRF2/2012 - FCC)

Os tubulões são elementos estruturais de fundação profunda, em geral, dotados de uma base alargada, construídos concretando-se um poço revestido ou não, aberto no terreno com um tubo de aço de diâmetro mínimo de 70 cm, de modo a permitir a entrada e o trabalho de um homem, pelo menos na sua etapa final, para completar a geometria da escavação e fazer a limpeza do solo. Divide-se em dois tipos básicos: os tubulões a céu aberto, normalmente sem revestimento e não armados, no caso de existir somente carga vertical, e os tubulões a ar comprimido ou pneumáticos. Os tubulões a ar comprimido são utilizados em solos onde há a presença de

- (A) bolsões de ar pressurizados.
- (B) rocha e que não seja possível removê-la.
- (C) argila de baixa capacidade.
- (D) água e que não seja possível esgotá-la.
- (E) camadas de areia confinadas.

77. (43 – IBGE/2010 – Cesgranrio)

Qual o tipo de fundação adequado quando o lençol freático é raso ou quando a obra se localiza dentro de rio, lagoa ou mar?

- (A) Radier
- (B) Sapata associada
- (C) Sapata contínua
- (D) Tubulão a ar comprimido
- (E) Tubulão a céu aberto

78. (22 – CGU/2008 – ESAF)

No preparo da cabeça e ligação com o bloco de coroamento de estacas pré-moldadas de concreto, é incorreto afirmar que:

- a) deve-se demolir uma parte da estaca até que a armadura fique exposta para o traspasse.
- b) na demolição do topo das estacas, devem ser utilizados ponteiros com grandes inclinações em relação a horizontal.
- c) deve-se deixar um comprimento de estaca suficiente para a penetração no bloco a fim de transmitir os esforços.
- d) deve-se demolir o topo da estaca danificado durante a cravação ou acima da cota de arrasamento.
- e) as armaduras devem penetrar no bloco de coroamento, mesmo quando estas não têm função resistente.

79. (26 - CGU/2012 - ESAF)

Sobre a execução de fundações, assinale a opção incorreta.

- a) Para solos com camadas fracas e resistentes alternadas, recomenda-se o uso de sapatas ou estacas de ponta.
- b) Estacas Mega são elementos pré-moldados, utilizados quando se deseja evitar vibrações ou para reforços de obras já executadas.
- c) Estaca Simplex é o tipo de estaca que desce o tubo dentro do terreno por cravação e não por perfuração, como se faz com a estaca Strauss.
- d) Uma variação da estaca Franki é a estaca tubada com base alargada.
- e) A fundação sobre maciços inclinados, independente da natureza do terreno (rochoso ou terroso), deve sempre se situar em planos horizontais, embora não necessariamente no mesmo nível.

80. (27 - CGU/2012 - ESAF)

Na execução de estruturas de contenções e fundações, é necessário conhecer os métodos de execução e as principais recomendações para cada um dos serviços que as compõem, recomendações estas já consagradas na engenharia de fundações. É incorreto afi rmar que:

- a) a execução da estaca franki é realizada pela cravação dinâmica de um tubo com bucha composta de areia e pedra.
- b) na execução de parede diafragma com estaca secante, deve-se utilizar perfuratriz de hélice contínua e lama bentonítica.
- c) no caso do uso da estaca do tipo hélice contínua, deve-se fi car atento ao slump do concreto, já que este influencia na introdução da armação.
- d) as estacas pré-moldadas de aço são introduzidas no solo por meio de cravação dinâmica de um martelo de queda livre, à explosão ou hidráulico.
- e) no caso do emprego de estacas raiz, as armações de estacas menores que 160mm não possuem estribos.

81. (56 - Petrobras/2010 - Cesgranrio)

Considere uma estaca em um solo que está em processo de adensamento. Qual fenômeno esse processo provoca no fuste da estaca?

- (A) Atrito lateral negativo.
- (B) Atrito lateral positivo.
- (C) Recalque diferencial específico.
- (D) Arrasamento.
- (E) Repique.

82. (33 - TJ-GO/2014 - FGV)

O tipo de fundação profunda, normalmente de seção cilíndrica, que possui ou não base alargada e que, na sua fase final de execução, requer a descida de operário é:

- (A) estaca;
- (B) caixão;
- (C) tubulão;
- (D) radier;
- (E) sapata.

83. (46 - DPE-RJ/2014 - FGV)

O elemento de fundação profunda escavado no terreno, onde as cargas são transmitidas preponderantemente pela ponta, é

- (A) estaca pré-moldada.
- (B) radier.
- (C) tubulão.
- (D) estaca raiz.
- (E) estaca Franki

84. (40 - TJ-GO/2014 - FGV)

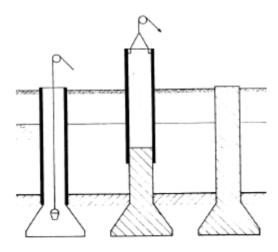
É executado através da cravação de um tubo por meio de sucessivos golpes de um pilão em uma bucha seca de pedra e areia aderida ao tubo. Atingida a cota de apoio, procede-se à expulsão da bucha, execução de base alargada, instalação da armadura e execução do fuste de concreto apiloado com a simultânea retirada do revestimento. O tipo de fundação cujas características gerais do procedimento executivo foram descritas acima é denominado:

- (A) estacas Strauss;
- (B) estacas Franki;
- (C) estacas pré-moldadas de concreto;
- (D) tubulões a céu aberto;

85. (35 - COMPESA/2014 - FGV)

A estaca constituída por concreto, moldada "in loco", que é executada por meio de trado contínuo e injeção de concreto pela própria haste do trado, é a

- (A) estaca prensada.
- (B) estaca escavada.
- (C) estaca tipo hélice contínua.
- (D) estaca apiloada.
- (E) estaca premoldada.


86. (59 - DPE-RJ/2014 - FGV)

A estaca constituída por concreto, moldada in loco e executada por meio de trado contínuo e injeção de concreto pela própria haste do trado é conhecida como

- (A) premoldada.
- (B) prensada.
- (C) escavada com injeção.
- (D) tipo hélice contínua.
- (E) de concreto moldada no solo

87. (61 - Defensoria/SP - 2009 - FCC)

Observe a figura.

A fundação representada na figura refere-se a

- (A) tubulão a céu aberto.
- (B) tubulão com ar comprimido.
- (C) sapatas associadas.

- (D) capatas isoladas
- (D) sapatas isoladas.
- (E) estacas raiz.

88. (26 – Fundação Casa/2013 – VUNESP)

O tipo de fundação profunda constituída por estaca de concreto, moldada in loco e executada por meio de trado e com injeção de concreto sob pressão controlada pela própria haste central do trado, simultaneamente à sua retirada do terreno, é a estaca

- (A) hélice contínua.
- (B) de reação.
- (C) tipo broca.
- (D) tipo Franki.
- (E) tipo Strauss

89. (29 - PMSP/2008 - FCC)


Tipo de Fundação Profunda

- I. em que a própria estaca ou um molde é introduzido no terreno por golpes de martelo.
- II. em que a própria estaca ou um molde é introduzido no terreno através de macaco hidráulico.
- III. executada por perfuração com trado e posterior concretagem.
- IV. executada por perfuração com o emprego de soquete.
- I, II, III e IV descrevem, respectivamente, as estacas
- (A) cravadas por prensagem, tipo broca, apiloada e cravada por percussão.
- (B) cravadas por percussão, cravada por prensagem, tipo broca e apiloada.
- (C) cravadas por prensagem, escavada por injeção, tipo Strauss e apiloada.
- (D) cravadas tipo Franki, escavada tipo Strauss, estaca escavada e cravada por percussão.
- (E) escavadas tipo Franki, cravada tipo Strauss, tipo broca e tipo mista.

90. (86 - TCE/CE - 2008 - FCC)

Considere os tipos de fundação empregados no mercado da construção civil:

- I. Caracteriza-se pela utilização de peças préfabricadas de concreto que variam entre 1,5 e 5,0 m de comprimento e que são cravadas, com uso de macaco hidráulico, justapostas uma após a outra.
- II. Fundação profunda caracterizada por possuir uma base alargada obtida pela introdução, no terreno, de certa quantidade de material granular ou concreto, por meio de golpes de um pilão.
- III. Fundação que pode ser feita a céu aberto ou a arcomprimido e ter, ou não, base alargada, podendo ser executada com revestimento metálico ou de concreto.

Os itens I, II, III e IV correspondem, respectivamente, às seguintes fundações:

- (A) estaca protendida, estaca Franki, estaca hélice contínua e radier.
- (B) estaca raiz, estaca Strauss, estaca escavada e sapatas.
- (C) estaca protendida, estaca ômega, estaca hélice contínua e alicerce.
- (D) estaca mega, estaca Strauss, estaca hélice contínua e sapatas.
- (E) estaca mega, estaca Franki, tubulão e radier.

91. (53 - TCE/PB - 2006 - FCC)

Com relação às fundações profundas utilizadas em edifícios de múltiplos pavimentos, é correto afirmar:

- (A) A estaca Strauss é um tipo de estaca escavada que utiliza uma camisa metálica para a contenção lateral do fuste e que vai sendo introduzida à medida que o solo vai sendo retirado.
- (B) Os tubulões a céu aberto são fundações com elevada capacidade de carga, que exigem somente um sarilho e um balde. Quando são utilizados na presença de lençol freático, a principal diferença executiva passa a ser o uso de anéis pré-fabricados de concreto para evitar o desmoronamento do fuste.
- (C) Na execução de uma fundação em estaca pré-moldada de concreto, pode-se deparar com situações imprevistas como a quebra de estacas. Nestas situações, deve-se cravar uma nova estaca, na posição mais próxima possível a que quebrou, evitando-se modificações no projeto dos blocos.
- (D) Nas situações em que a profundidade da camada do solo de apoio é superior a 12 metros, não poderão ser empregadas estacas metálicas e pré-moldadas de concreto, uma vez que o comprimento destas é limitado pelo equipamento de transporte.
- (E) Na execução das estacas escavadas do tipo hélice contínua, a contenção lateral do fuste é feita pela injeção de lama bentonítica pelo interior da hélice. Atingida a cota de apoio, a hélice é retirada e uma tremonha é introduzida no interior do fuste., de modo que o concreto seja lançado à medida que a lama bentonítica vai sendo recolhida.

92. (31 - TRF5/2008 - FCC)

Considere as características abaixo, referentes a alguns tipos de fundações profundas.

- I. É empregada em locais confinados ou terrenos acidentados devido à simplicidade do equipamento utilizado. Sua execução não causa vibrações, evitando problemas com edificações vizinhas. Porém, em geral possui capacidade de carga menor que estacas prémoldadas de concreto e possui limitação devido ao nível do lençol freático.
- II. Utiliza grande quantidade de cimento sob pressão; seu diâmetro de fuste é pequeno em relação à alta resistência de carga que suporta; seu equipamento é de pequeno porte e

permite cravações inclinadas; um dos principais problemas deste processo é a grande quantidade de lama gerada.

III. Apresenta método de grande impacto vibracional no solo; seu equipamento requer grande área de manobra além de ser pouco moderno; sua principal caracterísitica é o bulbo formado na ponta da estaca e um fuste nervurado por conta do processo de cravação; utiliza concreto seco apiloado e camisa metálica recuperável.

Os textos descrevem, respectivamente, os seguintes tipos de fundação:

Strauss, Raiz e Franki.

Barrete, Hélice Contínua e Mega.

Hélice Contínua, Broca e Tubulão.

Tubulão, Raiz e Strauss.

93. (42 - TJ/PI - 2009 - FCC)

A cota em que deve ser deixado o topo de uma estaca ou tubulão, demolindo ou cortando o excesso acima dessa, é denominada de

- (A) ficha.
- (B) coroamento.
- (C) arrasamento.
- (D) topo.
- (E) corte.

94. (22 - TRE/PB - 2007 - FCC)

Durante a execução das fundações de uma obra com estacas tipo hélice contínua com comprimentos perfurados da ordem de 14,0 m, foi encontrada uma obstrução por matacão a 8,0 m de profundidade. Não sendo possível o deslocamento da estaca, o tipo de fundação mais adequada para atravessar o matacão é:

- (A) perfil metálico.
- (B) estaca raiz.
- (C) barrete.
- (D) estação.
- (E) estaca de reação.

95. (41 - TRE/PI - 2009 - FCC)

As estacas são peças alongadas que podem ser cravadas ou confeccionadas in situ visando, principalmente, transmitir cargas a camadas profundas do terreno, entre outros usos. Cravação no solo de tubo com ponta obturada e execução de base alargada, colocação da armadura, lançamento do concreto com apiloamento simultâneo, extraindo-se o tubo à

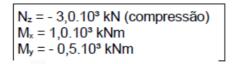
medida da concretagem, são atividades que pertencem ao método executivo das estacas do tipo

- (A) Raiz.
- (B) Franki.
- (C) Hélice contínua.
- (D) Escavada.
- (E) Strauss.

96. (32 - CEF/2013 - FCC)

As estacas, elementos de fundação profunda, podem ser classificadas, de acordo com a metodologia de execução, em pré-moldadas ou moldadas in loco, ou de acordo com o mecanismo de transmissão de cargas ao solo. Uma estaca classificada como flutuante tem como principal característica a transmissão de cargas

- (A) pela cravação no solo.
- (B) por atrito lateral, apenas.
- (C) por tração ou atrito negativo.
- (D) por resistência de ponta, apenas.
- (E) por atrito lateral e resistência de ponta.


97. (5 - TCE-RS/2014 - FCC)

Em função da disposição e quantidade de estacas isoladas ou alinhadas de um bloco, é critério limite estabelecido:

- (A) Para estacas de qualquer dimensão, é aceitável sem qualquer correção adicional, um desvio entre o eixo da estaca e o ponto de aplicação da resultante das solicitações do pilar de 25% da menor dimensão da estaca.
- (B) Para estacas de qualquer dimensão, é aceitável sem qualquer correção adicional, um desvio entre o eixo da estaca e o ponto de aplicação da resultante das solicitações do pilar de 50% da menor dimensão da estaca.
- (C) Não é permitido o emprego de estacas de diâmetros ou bitolas com diâmetros entre 0,30 m e 0,60 m sem travamento.
- (D) Não é permitido o emprego de estacas de diâmetros ou bitolas inferiores a 0,30 m sem travamento.
- (E) É permitido somente o emprego de estacas de diâmetros ou bitolas superiores a 0,15 m sem travamento.

98. (25 - Pref. Caldas Novas/2015 - UFG)

A figura a seguir corresponde à planta baixa de um bloco infinitamente rígido, apoiado sobre seis estacas verticais iguais. A decomposição da carga sobre o bloco resulta nos seguintes esforços:

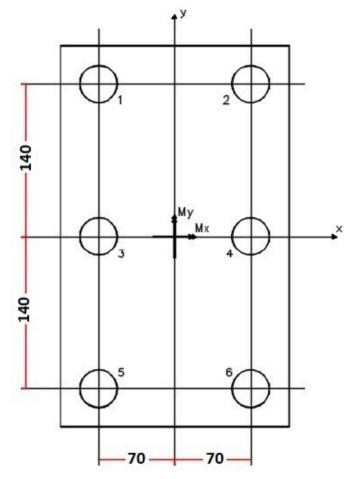


Figura 1 – Planta baixa de bloco sobre estaca (medidas em cm)

Utilizando-se o método da superposição, o valor, em kN,

da carga atuante na estaca seis será

- (A) 798
- (B) 560
- (C)440
- (D) 202

99. (33 - CELG-G&T/2014 - UFG)

Analise a figura 1 a seguir, que corresponde à planta baixa de um bloco sobre estacas em que são admitidas as seguintes hipóteses:

- o bloco é considerado como sendo infinitamente rígido;
- desprezam-se as pressões de apoio do bloco no terreno;
- as estacas são verticais, do mesmo tipo e possuem o mesmo diâmetro e comprimento.

A carga que o pilar exerce no bloco é decomposta em uma carga vertical e momentos:

N = 6.0x103 kN

Mx = 1,0x103 kNm

My = 2,0x103 kNm

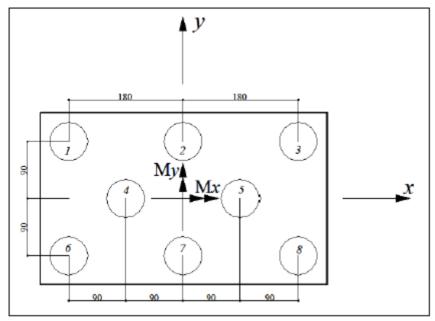


Figura 1 - Planta baixa de um bloco sobre estacas (medidas em cm)

Utilizando-se o método da superposição, o valor, em kN, da carga atuante na estaca 3 é

- (A) 543
- (B) 612
- (C)681
- (D) 750
- (E) 819

100. (42 - Pref. Caldas Novas/2015 – UFG)

Para um determinado projeto de uma viga de fundação rígida de 2,5 m de largura por 12,5 m de comprimento, foi calculado o recalque na base da viga igual a 2,8 cm. Essa viga suportará três pilares, com carga total de 9500 kN. Admitindo-se válida a hipótese de Winkler, o coeficiente de reação vertical (kv) do solo para o projeto dessa viga é igual a

- (A) 4857 kN/m³
- (B) 6857 kN/m^3
- (C) 8857 kN/m^3
- (D) 10857 kN/m³

101. (43 – CELG/2014 – UFG)

Para o projeto das fundações em sapatas de uma edificação foi realizada uma prova de carga direta, obtendo-se a curva tensão-recalque mostrada na figura 1, a seguir.

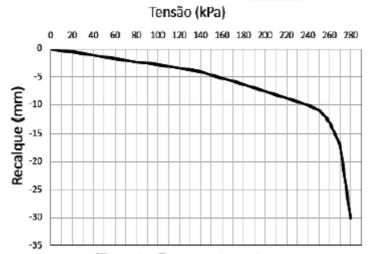


Figura 1 - Curva tensão-recalque

Considerando que no projeto foi utilizada uma tensão admissível igual a 133 kPa, o fator de segurança correspondente é, então, igual a

- (A) 2,0
- (B) 2,1
- (C) 2,2
- (D) 2,3
- (E) 2,4

A estimativa do recalque e das tensões em qualquer ponto no interior de um solo, produzidos por uma estaca, podem ser determinadas substituindo-se as tensões transmitidas ao terreno pela superposição de um conjunto de cargas concentradas. Este método é denominado:

- (A) Aoki-Veloso.
- (B) Funções de Transferência.
- (C) Aoki-Lopes.
- (D) Elementos Finitos.

7 – GABARITO

1) A	27) A	53) C	79) A
2) E	28) A	54) E	80) B
3) A	29) C	55) A	81) A
4) B	30) D	56) E	82) C
5) B	31) B	57) D	83) C
6) C	32) B	58) D	84) B
7) A	33) C	59) D	85) B
8) C	34) E	60) D	86) D
9) C	35) A	61) D	87) A
10) A	36) C	62) A	88) A
11) D	37) C	63) E	89) B
12) D	38) D	64) A	90) E
13) B	39) C	65) C	91) A
14) D	40) B	66) C	92) A
15) B	41) B	67) D	93) C
16) B	42) E	68) C	94) B
17) D	43) A	69) C	95) B
18) C	44) E	70) E	96) B
19) E	45) A	71) A	97) D
20) A	46) C	72) C	98) B
21) E	47) A	73) C	99) Anulada
22) C	48) D	74) C	100) D
23) B	49) A*	75) D	101) B
24) E	50) E	76) D	102) C
25) D	51) D	77) D	
26) B	52) A	78) B	

^{* -} Gabarito atualizado: C

ESSA LEI TODO MUNDO CON-IECE: PIRATARIA E CRIME.

Mas é sempre bom revisar o porquê e como você pode ser prejudicado com essa prática.

Professor investe seu tempo para elaborar os cursos e o site os coloca à venda.

Pirata divulga ilicitamente (grupos de rateio), utilizando-se do anonimato, nomes falsos ou laranjas (geralmente o pirata se anuncia como formador de "grupos solidários" de rateio que não visam lucro).

Pirata cria alunos fake praticando falsidade ideológica, comprando cursos do site em nome de pessoas aleatórias (usando nome, CPF, endereço e telefone de terceiros sem autorização).

Pirata compra, muitas vezes, clonando cartões de crédito (por vezes o sistema anti-fraude não consegue identificar o golpe a tempo).

Pirata fere os Termos de Uso, adultera as aulas e retira a identificação dos arquivos PDF (justamente porque a atividade é ilegal e ele não quer que seus fakes sejam identificados).

Pirata revende as aulas protegidas por direitos autorais, praticando concorrência desleal e em flagrante desrespeito à Lei de Direitos Autorais (Lei 9.610/98).

Concurseiro(a) desinformado participa de rateio, achando que nada disso está acontecendo e esperando se tornar servidor público para exigir o cumprimento das leis.

O professor que elaborou o curso não ganha nada, o site não recebe nada, e a pessoa que praticou todos os ilícitos anteriores (pirata) fica com o lucro.