
etrônico

Au

NÃO ATIVAR Raciocínio Lógico p/ TJ-TO (Analista Judiciário) Com Videoaulas- 2019

Professor: Brunno Lima, Guilherme Neves

APRESENTAÇÃO DO CURSO

Olá, queridos alunos!!!

Sejam bem vindos ao curso de Raciocínio Lógico para o concurso do TJ-TO.

Para quem não me conhece, meu nome é Guilherme Neves e a minha predileção é ensinar matérias de exatas como Matemática, Matemática Financeira, Raciocínio Lógico, Raciocínio Crítico, Estatística e Física.

Comecei a ensinar em cursos preparatórios para concursos há mais de 10 anos, mesmo antes de começar o meu curso de Bacharelado em Matemática na UFPE. No biênio 2007-2008, fui bolsista pela FACEPE/UFPE com o trabalho "Análise Matemática e Equações Diferenciais Parciais". Em 2009, publiquei meu livro chamado "Raciocínio Lógico Essencial" pela editora Campus. Tenho o prazer de ensinar Matemática na internet desde 2009 e desde 2014, moro nos Estados Unidos, onde estou me graduando em Engenharia Civil pela University of Central Florida.

Neste curso, você terá acesso a 5 aulas em PDF com teoria minuciosamente explicada e centenas de exercícios resolvidos.

Você também terá acesso às aulas em vídeo com o professor Brunno Lima, nosso parceiro nessa caminhada.

Ademais, você poderá fazer perguntas sobre as aulas em nosso fórum de dúvidas. Estarei sempre atento para responder rapidamente as suas perguntas.

Para tirar dúvidas e ter acesso a dicas e conteúdos gratuitos, acesse nossas redes sociais:

Instagram - @profguilhermeneves

https://www.instagram.com/profguilhermeneves

Canal do YouTube - Prof. Guilherme Neves

https://youtu.be/gqab047D9I4

E-mail: profguilhermeneves@gmail.com

METODOLOGIA DO CURSO

Aqui, parto do pressuposto de que o aluno não gosta de Raciocínio Lógico ou que não tem uma boa base. Portanto, não se preocupe. Tudo está sendo produzido com muito carinho para que você possa fechar a prova.

Nosso curso terá a seguinte estrutura:

resolução e comentários de QUESTÕES de concursos recentes ou inéditas

realização de SIMULADOS

Este curso está sendo preparado para que seja a sua única fonte de estudos. A teoria será minuciosamente explicada sempre com atenção à forma como o assunto é cobrado. Os exercícios são criteriosamente selecionados seguindo uma ordem crescente de dificuldade para a sua melhor compreensão.

Tenho certeza absoluta que na hora da prova você vai dar um sorrisinho e pensar: "bem que o professor Guilherme falou...".

A partir de hoje, Raciocínio Lógico será o seu aliado na sua caminhada à aprovação!!!

CONTEÚDO PROGRAMÁTICO E CRONOGRAMA

DISPONÍVEL	CONTEÚDO	
Aula demo Disponível em 03/01/2019	Regra de três simples e composta.	
Aula 01 Disponível em 10/01/2019	Princípios de contagem.	
Aula 02 Disponível em 17/01/2019	Operações com conjuntos.	
Aula 03 Disponível em 24/01/2019	Conjuntos numéricos: números naturais, inteiros, racionais e reais. Fatoração e números primos, máximo divisor comum e mínimo múltiplo comum.	
Aula 04 Disponível em 31/01/2019	Razões e proporções: grandezas diretamente proporcionais; grandezas inversamente proporcionais.	
Aula 05 Disponível em 07/02/2019	Porcentagem	

Antes de iniciarmos o nosso curso, vamos a alguns AVISOS IMPORTANTES:

- 1) Com o objetivo de *otimizar os seus estudos*, você encontrará, em *nossa plataforma (Área do aluno)*, alguns recursos que irão auxiliar bastante a sua aprendizagem, tais como *"Resumos"*, *"Slides"* e *"Mapas Mentais"* dos conteúdos mais importantes desse curso. Essas ferramentas de aprendizagem irão te auxiliar a perceber aqueles tópicos da matéria que você precisa dominar, que você não pode ir para a prova sem ler.
- 2) Em nossa Plataforma, procure pela *Trilha Estratégica e Monitoria* da sua respectiva <u>área/concurso alvo</u>. A Trilha Estratégica é elaborada pela nossa equipe do *Coaching*. Ela irá te indicar qual é exatamente o *melhor caminho* a ser seguido em seus estudos e vai te ajudar a *responder as seguintes perguntas*:
 - Qual a <u>melhor ordem</u> para estudar as aulas? Quais são os assuntos mais importantes?
 - Qual a melhor ordem de estudo das diferentes matérias? Por onde eu começo?
 - "Estou sem tempo e o concurso está próximo!" Posso estudar apenas algumas partes do curso? O que priorizar?
 - O que fazer a cada sessão de estudo? Quais assuntos revisar e quando devo revisálos?
 - A quais questões deve ser dada prioridade? Quais simulados devo resolver?
 - Quais são os trechos mais importantes da legislação?
- 3) Procure, nas instruções iniciais da "Monitoria", pelo *Link* da nossa "*Comunidade de Alunos*" no Telegram da sua área / concurso alvo. Essa comunidade é *exclusiva* para os nossos assinantes e será utilizada para orientá-los melhor sobre a utilização da nossa Trilha Estratégica. As melhores dúvidas apresentadas nas transmissões da "*Monitoria*" também serão respondidas na nossa *Comunidade de Alunos* do Telegram.
- (*) O Telegram foi escolhido por ser a <u>única plataforma</u> que <u>preserva a intimidade</u> dos assinantes e que, além disso, tem <u>recursos tecnológicos compatíveis</u> com os objetivos da nossa Comunidade de Alunos.

Nesta aula, vamos estudar Regra de Três.

Regra de Três é um método para resolver problemas que envolvem grandezas direta ou inversamente proporcionais.

Muitos livros ensinam este assunto fazendo uma separação entre Regra de Três Simples e Regra de Três Composta.

Na regra de três simples, três valores são conhecidos e temos como objetivo encontrar um quarto valor. Na regra de três composta, são conhecidos mais de três valores.

Entretanto, isso pouco importa. O método para resolver a regra de três simples e a regra de três composta é exatamente o mesmo.

O primeiro passo para resolver problemas de regra de três é construir uma tabela agrupando as grandezas de mesma espécie em colunas. Devemos ainda manter na mesma linha as grandezas de espécie diferentes em correspondência. Vejamos através de um exemplo.

Exemplo: Em uma fábrica, 400 peças são produzidas diariamente por 10 funcionários que trabalham 8 horas por dia. Quantas peças seriam produzidas diariamente por 15 funcionários que trabalham 6 horas por dia, considerando que a dificuldade para produzir as peças dobrou?

Neste exemplo, são 4 grandezas envolvidas: o número de peças, a quantidade de funcionários, o número de horas que cada funcionário trabalha diariamente e a dificuldade. Vamos colocar estas grandezas no cabeçalho da tabela.

Número de peças Quantidade de funcionários Horas por dia Dificuldade

Temos duas situações para comparar.

Na primeira situação, 400 peças são produzidas diariamente por 10 pessoas que trabalham 8 horas por dia. Esta situação em que todos os valores são conhecidos ficará na primeira linha da tabela.

Temos ainda a grandeza "dificuldade". Como colocar isto na tabela? Ora, o problema disse que a dificuldade dobrou. Então vamos colocar um valor qualquer para a dificuldade na primeira situação. Na segunda situação, a dificuldade será o dobro. Podemos colocar 1 e 2, ou 10 e 20, ou 100 e 200. Tanto Faz. Vou colocar dificuldade 1 na primeira situação e dificuldade 2 na segunda situação.

Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1

Na segunda situação, há 15 funcionários que trabalham 6 horas por dia. Sabemos ainda que a dificuldade dobrou. Queremos saber quantas peças serão produzidas diariamente. Esta situação ficará na segunda linha da tabela.

Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1
X	15	6	2

Para resolver este problema, vamos comparar as grandezas conhecidas (quantidade de funcionários, horas/dia, dificuldade) com a grandeza desconhecida (número de peças).

Para podermos comparar, vamos colocar uma seta para baixo na coluna da grandeza desconhecida. Sempre é assim! Na coluna da grandeza desconhecida (onde tem o "x"), colocamos uma seta para baixo.

Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1
x	15	6	2

Vamos agora comparar as grandezas e decidir se são diretamente ou inversamente proporcionais.

Quando as grandezas forem diretamente proporcionais, colocaremos uma seta para baixo. Quando as grandezas forem inversamente proporcionais, colocaremos uma seta para cima.

E como sabemos se são direta ou inversamente proporcionais? É muito simples.

Você vai observar se a grandeza conhecida aumentou ou diminuiu. Depois, vai se perguntar o que acontece com a grandeza desconhecida. Se as duas grandezas aumentam ou se as duas grandezas diminuem, elas serão diretamente proporcionais. Se uma grandeza aumenta enquanto a outra diminui, as grandezas são inversamente proporcionais.

Voltemos à nossa tabela.

Vamos comparar a quantidade de funcionários com o número de peças. Observe que a quantidade de funcionários **aumentou**. Ora, se temos mais funcionários trabalhando, então a quantidade de peças produzidas também **aumentará**.

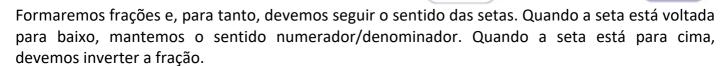
Como as duas grandezas aumentaram, então elas são diretamente proporcionais. A seta da quantidade de funcionários ficará voltada para baixo também.

Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1
x	15	6	2

Vamos agora comparar a quantidade de horas trabalhadas por dia com o número de peças produzidas. Observe que a quantidade de horas trabalhadas diminuiu. Como os funcionários estão trabalhando menos horas por dia, a quantidade de peças produzidas diariamente vai diminuir.

Como as duas grandezas diminuíram, as grandezas são diretamente proporcionais. A seta fica para baixo.

Lembre-se: quando as duas grandezas aumentam ou quando as duas diminuem, as grandezas são diretamente proporcionais e a seta fica voltada para baixo.


Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1
x	15	6	2

Finalmente, vamos comparar a dificuldade com o número de peças. A dificuldade aumentou. Como o processo para produzir peças está mais difícil, o número de peças produzidas tende a diminuir.

Como uma grandeza está aumentando e a outra está diminuindo, as grandezas são inversamente proporcionais. Neste caso, a seta fica voltada para cima.

Número de peças	Quantidade de funcionários	Horas por dia	Dificuldade
400	10	8	1 🛕
x 🗸	15	6	2

O último passo é montar a equação.

Do lado esquerdo da equação, vamos colocar a fração da grandeza desconhecida.

$$\frac{400}{x} =$$

Do lado esquerdo, vamos colocar o PRODUTO das outras frações, ou seja, vamos multiplicar as outras frações obedecendo o sentido das setas. Ficamos assim:

$$\frac{400}{x} = \frac{10}{15} \cdot \frac{8}{6} \cdot \frac{2}{1}$$

Observe que a única fração invertida foi a última, em que a seta ficou para cima.

Agora é só resolver a equação e correr pro abraço!!

$$\frac{400}{x} = \frac{160}{90}$$

Neste ponto, podemos simplificar por 10 a fração da direita. Se você está acostumado com simplificação de frações, poderia ter simplificado antes de multiplicar.

$$\frac{400}{x} = \frac{16}{9}$$

Agora, vamos aplicar a propriedade fundamental das proporções: o produto dos meios (16 e x) é igual ao produto dos extremos (400 e 9). Em outras palavras, vamos multiplicar cruzado.

$$16 \cdot x = 400 \cdot 9$$

$$16 \cdot x = 3.600$$

$$x = \frac{3.600}{16} = 225$$

Serão produzidas 225 peças diariamente.

Gostou? Muito fácil, né?

Pronto. Você já aprendeu regra de três!!!

- Coloque no cabeçalho da tabela as grandezas.
- Na primeira linha, coloque os valores das grandezas na situação em que todas são conhecidas.
- Na segunda linha, coloque os valores das grandezas na situação em que uma das grandezas é desconhecida.
- Coloque uma seta para baixo na coluna da grandeza desconhecida (onde tem o "x").
- Compare as grandezas conhecidas com a grandeza desconhecida.
- Se as duas grandezas aumentam ou se as duas diminuem, as grandezas são diretamente proporcionais e a seta fica voltada para baixo.
- Se uma grandeza aumenta enquanto a outra diminui, as grandezas são inversamente proporcionais e a seta fica voltada para cima.
- Montar a proporção e resolver a equação.
- Marcar o gabarito e correr pro abraço.

Vamos agora resolver exercícios para colocar em prática.

2. LISTA DE QUESTÕES DE CONCURSOS ANTERIORES

1. (FCC 2018/TRT - 2ª Região)

Em um julgamento sobre danos ambientais, a acusação apresentou o dado de que os 5 fornos de uma olaria consumiam 50 toneladas de carbono trabalhando 10 horas diárias por 15 dias. A defesa propõe reduzir as atividades da olaria para 3 fornos trabalhando 9 horas diárias por 18 dias. Comparando o consumo de carbono da situação apresentada pela acusação (15 dias, 5 fornos, 10 horas diárias) com a situação proposta pela defesa (18 dias, 3 fornos, 9 horas diárias), houve uma redução do consumo de carbono, em toneladas, de

- (A) 12,4
- (B) 17,6
- (C) 32,4
- (D) 28,6
- (E) 20,4

2. (FCC 2018/ TRT - 2ª Região)

Para preparar um certo número de caixas, 15 funcionários de uma empresa trabalharam durante 8 horas, cada um preparando 7 caixas a cada 20 minutos. Já cansados, três dos funcionários foram embora e os que ficaram trabalharam por mais 6 horas, mais lentos, cada um deles preparando 7 caixas a cada 40 minutos. Ao todo, nessas 14 horas os funcionários conseguiram preparar um número de caixas

- (A) entre 3150 e 3200
- (B) entre 3200 e 3250
- (C) entre 3250 e 3300
- (D) entre 3300 e 3350
- (E) entre 3350 e 3400

3. (FCC 2018/TRT - 2ª REGIÃO)

Quinze fiscais iam vistoriar todos os estabelecimentos comerciais da zona sul da cidade em 25 dias, trabalhando 8 horas por dia cada um e todos com mesma produtividade. Depois de 5 dias completos desse serviço, a superintendência regional solicitou, em regime de urgência e com pagamento de hora extra, que os 15 funcionários passassem a trabalhar 10 horas por dia para finalizar a vistoria em menos dias do que os 25. Considerando que a solicitação foi atendida e que

os funcionários continuaram o trabalho com mesma produtividade, a vistoria completa dos estabelecimentos comerciais da zona sul ocorreu em um total de

- (A) 20 dias.
- (B) 17 dias.
- (C) 19 dias.
- (D) 21 dias.
- (E) 18 dias.

4. (FCC 2018/SABESP)

Um reservatório com volume igual a 240 m3 está sendo abastecido de forma ininterrupta a uma velocidade de 150 L/s. O tempo aproximado para abastecer 2/3 deste reservatório é, em h,

- (A) 3,0
- (B) 0,3
- (C)30
- (D) 0,15
- (E) 1,5

5. (FCC 2018/SABESP)

Nas obras de pavimentação de uma rodovia, a quantidade de quilômetros de estrada pavimentados em uma semana é proporcional tanto ao número de funcionários trabalhando, quanto à jornada diária de trabalho de cada um deles. Se 20 funcionários, trabalhando 8 horas por dia cada um, pavimentam 15 quilômetros de rodovia em uma semana, para pavimentar exatamente 21 quilômetros de rodovia em uma semana, a jornada diária de trabalho de 32 funcionários deverá ser de

- (A) 4 horas.
- (B) 7 horas.
- (C) 6 horas.
- (D) 5 horas.
- (E) 11 horas.

6. (FCC 2018/SABESP)

Um auxiliar de escritório recebeu a tarefa de arquivar 1.200 dossiês de um escritório de advocacia. Logo que começou, fez alguns cálculos e estimou que demoraria cerca de 16 horas para arquivar os 1.200 dossiês. Após arquivar metade deles, recebeu a notícia de que outros 250 dossiês adicionais também deveriam ser arquivados. Refazendo as contas, o auxiliar concluiu que, no mesmo ritmo de trabalho, além das 8 horas que já havia gasto no serviço, levaria, para completá-lo, outras

- (A) 9 horas e 40 minutos.
- (B) 8 horas.
- (C) 3 horas e 20 minutos.
- (D) 11 horas e 20 minutos.
- (E) 16 horas.

7. (FCC 2018/TRT - 6ª Região)

Uma equipe de 25 trabalhadores foi contratada para realizar uma obra em 14 dias. Passados 9 dias, a equipe só havia realizado 3 7 da obra. O coordenador da obra decidiu que irá contratar mais trabalhadores, com o mesmo ritmo de trabalho dos 25 que já estão na obra, para dar conta de terminá-la exatamente no prazo contratado. Sendo assim, o coordenador deve contratar um número mínimo de trabalhadores igual a

- (A) 36.
- (B) 28.
- (C) 32.
- (D) 42.
- (E) 35.

8. (FCC 2018/ TRT - 6ª Região)

Em uma obra de construção civil, 12 operários com a mesma velocidade de trabalho, azulejaram x m2 de paredes em 2 horas e 45 minutos. No dia seguinte, 3 dentre os 12 operários do dia anterior, azulejarão x 3 m2 de paredes em um tempo igual a

- (A) 4 horas e 10 minutos.
- (B) 2 horas e 55 minutos.
- (C) 3 horas e 15 minutos.
- (D) 4 horas e 30 minutos.
- (E) 3 horas e 40 minutos.

9. (FCC 2017 / DPE-RS)

Um grupo de 8 funcionários analisou 32 propostas de reestruturação de um determinado setor de uma empresa em 16 horas de trabalho. Para analisar 48 dessas propostas, em 12 horas de trabalho, um outro grupo de funcionários, em igualdade de condições do grupo anterior, deverá ser composto por um número de pessoas igual a

- (A) 18.
- (B) 12.
- (C) 16.

- (D) 14.
- (E) 20

10.(FCC 2017/ DPE-RS)

Sabe-se que em uma empresa, 19% dos funcionários se deslocam para o trabalho utilizando automóvel. Os demais funcionários, em número de 1053, utilizam transporte público, bicicleta ou se deslocam para o trabalho caminhando. O número de funcionários que utilizam automóvel para se deslocar para o trabalho é

- (A) 263
- (B) 247
- (C) 195
- (D) 321
- (E) 401

11. (FCC 2016/AL-MS)

O preço de um produto em uma embalagem cuja capacidade é de 1,2 L é R\$ 35,00. O mesmo produto, vendido em uma embalagem cuja capacidade é de 250 mL, custa R\$ 7,00. Para que o preço desse produto, vendido na embalagem de 1,2 L, seja proporcional ao preço do produto vendido na embalagem menor é necessário


- (A) aumentá-lo em R\$ 2,40.
- (B) reduzi-lo em R\$ 4,80.
- (C) reduzi-lo em R\$ 1,40.
- (D) mantê-lo como está.
- (E) aumentá-lo em R\$ 3,20.

12. (FCC 2016/AL-MS)

O planejamento de uma excursão mostra que há mantimento suficiente para que 21 excursionistas façam 3 refeições diárias durante 48 dias. Após um último encontro de planejamento, decidiram que o regime de alimentação dos excursionistas seria de apenas 2 refeições diárias. Com essa alteração no número de refeições diárias foram admitidos mais 7 excursionistas para a viagem. Dessa maneira, a duração máxima da excursão, sem faltar mantimento, poderá ser

- (A) aumentada em 12 dias.
- (B) reduzida em 8 dias.
- (C) reduzida em 9 dias.
- (D) aumentada em 6 dias.
- (E) a mesma.

Em um acampamento foi providenciado suprimento suficiente para que 15 acampantes possam fazer três refeições completas por dia durante 42 dias. Ao invés de chegarem 15 acampantes, chegaram 35. Após uma conversa entre eles, decidiram que cada acampante teria direito a apenas duas refeições completas por dia. Desta maneira, o número de dias a menos que o novo grupo ficará no acampamento é igual a

- (A) 15.
- (B) 32.
- (C) 26.
- (D) 9.
- (E) 18

14. (FCC 2016/COPERGAS-PE)

Com 15 máquinas de asfaltar ruas, a prefeitura de uma cidade pode terminar a obra que pretende fazer em exatos 42 dias de trabalho. O prefeito pretende diminuir esse prazo e está disposto a trazer mais máquinas, além das 15 máquinas disponíveis, para executarem essa obra em 35 dias. O número de máquinas, que o prefeito precisará acrescentar para conseguir o seu intento, é igual a

- (A) 5.
- (B) 9.
- (C) 4.
- (D) 3.
- (E) 7.

15. (FCC 2016/ TRF - 3ª REGIÃO)

Uma indústria produz um tipo de máquina que demanda a ação de grupos de funcionários no preparo para o despacho ao cliente. Um grupo de 20 funcionários prepara o despacho de 150 máquinas em 45 dias. Para preparar o despacho de 275 máquinas, essa indústria designou 30 funcionários. O número de dias gastos por esses 30 funcionários para preparem essas 275 máquinas é igual a

- (A) 55.
- (B) 36.
- (C) 60.
- (D) 72.
- (E) 48.

16. (FCC 2016/ TRF - 3ª REGIÃO)

Uma empresa pavimentadora de ruas utiliza uma máquina que retira o asfalto antigo na razão de 3 metros lineares de rua a cada 8 minutos. O tempo que essa máquina gastará para retirar o asfalto de 3,75 km lineares de rua, de forma ininterrupta, equivale a

- (A) 6 dias, 22 horas e 40 minutos.
- (B) 6 dias, 6 horas e 16 minutos.
- (C) 6 dias, 16 horas e 16 minutos.
- (D) 6 dias, 1 hora e 20 minutos.
- (E) 6 dias, 8 horas e 30 minutos.

17. (FCC 2014/TRF 3ª Região)

Um tanque com 5 000 litros de capacidade estava repleto de água quando, às 00:00 hora de um certo dia, a água começou a escapar por um furo à vazão constante. À 01:00 hora desse mesmo dia, o tanque estava com 4 985 litros de água, e a vazão de escape da água permaneceu constante até o tanque se esvaziar totalmente, dias depois. O primeiro instante em que o tanque se esvaziou totalmente ocorreu em um certo dia às

- (A) 14 horas e 20 minutos.
- (B) 21 horas e 20 minutos.
- (C) 18 horas e 40 minutos.
- (D) 14 horas e 40 minutos.
- (E) 16 horas e 20 minutos.

18. (FCC 2014/TRF 3ª Região)

Sabe-se que uma máquina copiadora imprime 80 cópias em 1 minuto e 15 segundos. O tempo necessário para que 7 máquinas copiadoras, de mesma capacidade que a primeira citada, possam imprimir 3 360 cópias é de

- (A) 15 minutos.
- (B) 3 minutos e 45 segundos.
- (C) 7 minutos e 30 segundos.
- (D) 4 minutos e 50 segundos.
- (E) 7 minutos.

19. (FCC 2014/Câmara Municipal de São Paulo)

O trabalho de varrição de 6.000 m² e calçadas é feita em um dia de trabalho por 18 varredores trabalhando 5 horas por dia. Mantendo-se as mesmas proporções, 15 varredores varrerão 7.500 m² de calçadas, em um dia, trabalhando por dia, o tempo de

- (A) 8 horas e 15 minutos.
- (B) 9 horas.
- (C) 7 horas e 45 minutos.
- (D) 7 horas e 30 minutos.
- (E) 5 horas e 30 minutos.

20. (FCC 2018/METRO-SP)

O cozinheiro vai colocar bifes no refeitório de uma empresa para o almoço. Ele sabe que 321 pessoas irão consumir bifes, e que são necessários 5 bifes para cada 3 pessoas. Se os bifes são comprados pelo cozinheiro em bandejas com 6 unidades, o total de bandejas suficientes para suprir as necessidades de bifes desse refeitório no almoço é igual a

- (A) 64.
- (B) 107.
- (C) 90.
- (D) 86.
- (E) 96.

21.(CESPE 2018/EMAP)

Os operadores dos guindastes do Porto de Itaqui são todos igualmente eficientes. Em um único dia, seis desses operadores, cada um deles trabalhando durante 8 horas, carregam 12 navios.

Com referência a esses operadores, julgue os itens seguintes.

Para carregar 18 navios em um único dia, seis desses operadores deverão trabalhar durante mais de 13 horas.

22. (CESPE 2018/EMAP)

Os operadores dos guindastes do Porto de Itaqui são todos igualmente eficientes. Em um único dia, seis desses operadores, cada um deles trabalhando durante 8 horas, carregam 12 navios. Com referência a esses operadores, julgue os itens seguintes.

Em um mesmo dia, 8 desses operadores, trabalhando durante 7 horas, carregam mais de 15 navios.

23. (CESPE 2018/IFF)

Se 4 servidores, igualmente eficientes, limpam 30 salas de aula em exatamente 5 horas, então, 8 servidores, trabalhando com a mesma eficiência dos primeiros, limparão 36 salas em exatamente

- A) 7 horas.
- B) 6 horas.
- C) 5 horas.
- D) 4 horas.
- E) 3 horas

24. (CESPE 2017 / SEDF)

Situação hipotética: Em uma empresa de TV a cabo, 12 técnicos que trabalham no mesmo ritmo, 6 horas por dia, atendem toda a demanda de reparo e instalação solicitada pelos clientes diariamente. Entretanto, devido a uma promoção, a demanda dobrou e a empresa passou a estipular que todos os técnicos trabalhassem por 8 horas diárias.

Assertiva: Nessa situação, para atender totalmente à nova demanda, serão necessários, pelo menos, 8 novos técnicos que trabalhem no mesmo ritmo que os demais.

25. (CESPE 2017/ SEDF)

Em uma fábrica, 10 empregados igualmente eficientes trabalham 8 horas em um dia e produzem 500 unidades de um produto. Nessa situação, para que sejam produzidas 4.000 unidades desse produto em 4 horas de trabalho em um dia, seriam necessários mais 150 funcionários com a mesma eficiência dos demais.

26. (CESPE 2016/FUB)

Diariamente, o tempo médio gasto pelos servidores de determinado departamento para executar suas tarefas é diretamente proporcional à quantidade de tarefas executadas e inversamente proporcional à sua produtividade individual diária P.

Com base nessas informações, julgue os itens a seguir

Considere que na terça-feira a quantidade de tarefas a serem executadas por um servidor correspondia a 50% a mais do que a quantidade de tarefas executadas no dia anterior. Nesse caso, para que o servidor concluísse seu trabalho da terça-feira no mesmo tempo gasto para concluí-lo na segunda-feira, a sua produtividade na terça-feira deveria aumentar em 50% em relação à produtividade da segunda-feira.

27.(CESPE 2016/FUB)

Diariamente, o tempo médio gasto pelos servidores de determinado departamento para executar suas tarefas é diretamente proporcional à quantidade de tarefas executadas e inversamente proporcional à sua produtividade individual diária P.

Com base nessas informações, julgue os itens a seguir

Se, na segunda-feira, um servidor gastou 6 horas para executar todas as 15 tarefas a seu encargo e, na sexta-feira, ele gastou 7 horas para executar as suas 18 tarefas, então, nessa situação, o servidor manteve a mesma produtividade nesses dois dias.

28. (CESPE 2016/PREFEITURA DE SÃO PAULO-SP)

Na cidade de São Paulo, se for constatada reforma irregular em imóvel avaliado em P reais, o proprietário será multado em valor igual a k% de P × t, expresso em reais, em que t é o tempo, em meses, decorrido desde a constatação da irregularidade até a reparação dessa irregularidade. A constante k é válida para todas as reformas irregulares de imóveis da capital paulista e é determinada por autoridade competente.

Se, de acordo com as informações do texto , for aplicada multa de R\$ 900,00 em razão de reforma irregular em imóvel localizado na capital paulista e avaliado em R\$ 150.000,00, cuja irregularidade foi reparada em um mês, então a multa a ser aplicada em razão de reforma irregular em imóvel localizado na capital paulista e avaliado em R\$ 180.000,00, cuja irregularidade também foi reparada em um mês, será de

- A) R\$ 1.080,00.
- B) R\$ 1.350,00.
- C) R\$ 1.500,00.
- D) R\$ 1.620,00.
- E) R\$ 1.800,00.

29. (CESPE 2016/CPRM)

Três caminhões de lixo que trabalham durante doze horas com a mesma produtividade recolhem o lixo de determinada cidade. Nesse caso, cinco desses caminhões, todos com a mesma produtividade, recolherão o lixo dessa cidade trabalhando durante

- A) 6 horas.
- B) 7 horas e 12 minutos.
- C) 7 horas e 20 minutos.
- D) 8 horas.
- E) 4 horas e 48 minutos.

30. (CESPE 2016/CPRM)

Por 10 torneiras, todas de um mesmo tipo e com igual vazão, fluem 600 L de água em 40 minutos. Assim, por 12 dessas torneiras, todas do mesmo tipo e com a mesma vazão, em 50 minutos fluirão

- A) 625 L de água.
- B) 576 L de água.
- C) 400 L de água.
- D) 900 L de água.

E) 750 L de água.

31. (CESPE 2015 / TELEBRAS)

A equipe de atendentes de um serviço de telemarketing é constituída por 30 empregados, divididos em 3 grupos, que trabalham de acordo com a seguinte escala.

- Grupo I: 7 homens e 3 mulheres, que trabalham das 6 h às 12 h.
- Grupo II: 4 homens e 6 mulheres, que trabalham das 9 h às 15 h.
- Grupo III: 1 homem e 9 mulheres, que trabalham das 12 h às 18 h.

A respeito dessa equipe, julgue os itens que se seguem

Considere que os 30 atendentes desse serviço de telemarketing sejam igualmente eficientes e atendam a 1.800 ligações trabalhando, cada um deles, 6 horas por dia. Considere, ainda, que a empresa deseje contratar novos atendentes, tão eficientes quanto os que lá estão, para diminuir a jornada de trabalho para 5 horas, mas que a nova equipe — os 30 atendentes antigos e os novos contratados — passe a atender a 2.000 ligações diariamente. Nesse caso, a nova equipe deverá ser composta por menos de 42 atendentes.

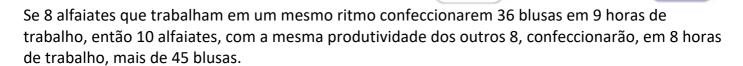
32.(CESPE 2015/TCU)

Recentemente, a empresa Fast Brick Robotics mostrou ao mundo um robô, conhecido como Hadrian 105, capaz de construir casas em tempo recorde. Ele consegue trabalhar algo em torno de 20 vezes mais rápido que um ser humano, sendo capaz de construir até 150 casas por ano, segundo informações da empresa que o fabrica.

Internet: <www.fastbrickrobotics.net> (com adaptações).

Tendo como referência as informações acima, julgue os itens a seguir.

Se um único robô constrói uma casa de $100~{\rm m}^2$ em dois dias, então 4 robôs serão capazes de construir 6 casas de $75~{\rm m}^2$ em menos de dois dias.


33. (CESPE 2016/TCE-PA)

Suponha que o tribunal de contas de determinado estado disponha de 30 dias para analisar as contas de 800 contratos firmados pela administração. Considerando que essa análise é necessária para que a administração pública possa programar o orçamento do próximo ano e que o resultado da análise deve ser a aprovação ou rejeição das contas, julgue os itens a seguir.

Suponha que tenham sido designados 10 analistas do tribunal para analisar todos os contratos. Se cada analista levar 5 dias para analisar um contrato, os 800 contratos serão analisados em 30 dias.

34. (CESPE 2014/MDIC)

35. (CESPE 2009/PM-AC)

A poluição dos carros paulistanos

São Paulo começou neste ano a fazer a inspeção ambiental dos veículos registrados na cidade. Os movidos a dísel são os primeiros.

Veja os números dos veículos na capital paulista:

- veículos registrados: 6,1 milhões;
- está fora de circulação ou trafega irregularmente: 1,5 milhão;
- movidos a dísel: 800.000;
- cumprem os limites de emissão de poluentes: 20% dos veículos inspecionados.

Idem, p. 63 (com adaptações).

Tendo o texto acima como referência, julgue o item seguinte.

Considere que 18 agentes do departamento de trânsito da cidade de São Paulo conseguem fazer a inspeção ambiental de 360 veículos em 5 horas de trabalho. Considere também que todos os agentes trabalham com a mesma eficiência e que o tempo gasto para inspecionar cada veículo é o mesmo para qualquer tipo de veículo. Nessa situação, para inspecionar todos os veículos movidos a dísel em 400 horas de trabalho serão necessários mais de 450 agentes.

(CESPE 2008/Ministério do Esporte)

Para implantar um novo plano de saúde em uma empresa, uma equipe foi incumbida de fazer o cadastro dos empregados que desejam aderir ao plano. Sabendo que 12 elementos dessa equipe conseguem cadastrar 1.296 empregados em 9 horas de trabalho e que a equipe trabalha de forma homogênea, julgue os itens a seguir.

- 36. Para cadastrar 468 empregados, 6 elementos da equipe levariam 6 h e 30 min.
- 37. Dez elementos da equipe, em 1 h, 10 min e 30 s, conseguem cadastrar 141 empregados.
- 38. Em 5 min, 2 empregados são cadastrados por um elemento da equipe.

39. (CESPE 2009/UNIPAMPA)

Sabendo que cada técnico de um laboratório coleta 15 unidades de determinado material em 25 minutos, julgue o item seguinte.

Para se coletar 15 unidades do material em 4 minutos e 10 segundos, serão necessários menos de 8 técnicos.

(CESPE 2008/SEBRAE-BA)

Uma equipe de apoio administrativo foi encarregada de fazer o levantamento de dados visando à organização dos arquivos da empresa. Sabendo-se que 2 membros da equipe fazem o levantamento de 9% dos dados necessários em 5 horas de trabalho e que todos os membros da equipe trabalham no mesmo ritmo, julgue os itens seguintes.

- 40. Em 6 horas e 40 minutos de trabalho, 5 membros da equipe fazem o levantamento de 30% dos dados necessários.
- 41. Oito membros da equipe, para realizarem o levantamento de 72% dos dados necessários, gastarão mais de 12 horas de trabalho.
- 42. Para o levantamento de metade dos dados necessários em 5 horas, 33 minutos e 20 segundos serão necessários menos de 9 membros da equipe.

(CESPE 2008/SEBRAE-BA)

Uma equipe de empregados do setor apoio administrativo de uma empresa foi designada para treinar um grupo de empregados recém-contratados. Sabe-se que todos os elementos da equipe treinadora são igualmente eficientes e se um único elemento dessa equipe fosse treinar todos os empregados novatos, gastaria 16 horas para fazê-lo. Nesse caso,

- 43. três elementos da equipe treinadora gastariam 5 horas e 20 minutos para treinar todos os novos empregados.
- 44. em duas horas, seis elementos da equipe treinadora treinariam todos os novos empregados.

(CESPE 2009/MEC)

Considerando que uma equipe de trabalhadores igualmente eficientes seja formada para proceder à codificação de documentos, e que cada elemento dessa equipe consiga codificar 10% dos documentos em 3 h, julgue os itens que se seguem.

- 45. Para codificar metade dos documentos, 6 elementos da equipe gastarão mais de 2 h.
- 46. Em uma hora e meia, 4 elementos da equipe codificarão menos de 18% dos documentos.

(CESPE 2010/SEDU-ES)

Considere que, para a reforma das salas de aula de uma escola, sejam necessários 18 operários trabalhando 8 horas por dia durante 20 dias úteis. Com base nessa situação hipotética e considerando as possíveis reduções no prazo dessa reforma, julgue os itens a seguir.

47. Para a conclusão das obras em 15 dias úteis, mantendo-se o regime de trabalho de 8 horas diárias, a quantidade adicional de operários que deve ser contratada é inferior a 7.

- 48. Considerando que não haja possibilidade de novas contratações e que a reforma deva ser concluída em 16 dias úteis, então, nesse caso, cada operário deverá trabalhar 1 hora extra por dia.
- 49. Para a conclusão das obras em 10 dias úteis, aumentando-se o regime de trabalho para 9 horas diárias, a quantidade adicional de operários que deverá ser contratada será superior a 12.

50. (CESPE 2009/Pref. de Ipojuca)

Se 3 operários conseguem fabricar, com a ajuda de uma máquina, 84 pares de sapatos em 7 horas de trabalho e, em certo dia, eles trabalharem nas mesmas condições por apenas 3 horas, então, nesse dia, eles fabricarão 36 pares de sapatos.

(CESPE 2007/MPE-AM)

Considere que todos os técnicos de uma empresa trabalhem com a mesma eficiência, isto é, a quantidade de trabalho que cada um realiza é a mesma para todos, em um mesmo período de tempo. Nesse caso, se 3 técnicos fazem a manutenção de 36 aparelhos de ar condicionado em 12 dias, então

- 51.3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 1 dia.
- 52.1 técnico faz a manutenção de 1 aparelho de ar condicionado em 1 dia.
- 53.3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 3 dias.
- 54.6 técnicos fazem a manutenção de 6 aparelhos de ar condicionado em 1 dia.

(CESPE 2007/MPE-AM)

O número de passageiros que um barco pode transportar é calculado com base no fato de que o peso de 40 adultos equivale ao de 48 crianças. Com relação a essa situação, julgue os itens seguintes.

- 55.Em um barco que tem capacidade de transportar 60 passageiros adultos, podem ser transportadas mais de 74 crianças.
- 56.Em um barco que tem capacidade para transportar 60 passageiros adultos, podem ser transportados 50 adultos e 12 crianças.

57. (VUNESP 2018/CM de Dois Córregos)

Para realizar determinado projeto, um profissional leva 10 dias, trabalhando 6 horas por dia. Se esse profissional mantiver o mesmo ritmo diário de trabalho, o número de horas diárias que ele terá que trabalhar para realizar esse projeto em 8 dias será

- a) 8,5.
- b) 8,0.
- c) 7,5.
- d) 7,0.
- e) 6,5.

58. (VUNESP 2018/CM de Indaiatuba)

É sabido que 5 operários transportaram 4 m³ de areia em exatas duas horas de trabalho. A quantidade de areia, em m³, que outros 13 operários, cada um com a mesma capacidade de cada um dos 5 operários anteriores, transportarão a mais que os operários anteriores, no mesmo tempo de serviço, é igual a

- a) 8,2.
- b) 7,1.
- c) 6,4.
- d) 5,8.
- e) 5,3.

59. (VUNESP 2018/IPSM São José dos Campos)

Considere que os professores gastam sempre o mesmo tempo para corrigir cada redação. Sabe-se que 12 professores corrigiram 1.575 redações em 7 horas e 30 minutos. Para corrigir 1.120 redações, 15 professores gastarão o tempo de

- a) 3 horas e 28 minutos.
- b) 3 horas e 42 minutos.
- c) 4 horas e 16 minutos.
- d) 4 horas e 34 minutos.
- e) 5 horas e 4 minutos.

60. (VUNESP 2018/IPSM São José dos Campos)

Um total de 30 mil unidades de determinado produto seria produzido por 6 máquinas, todas idênticas, trabalhando ao mesmo tempo, durante 5 horas e 30 minutos, de forma ininterrupta. No exato instante em que se produziu metade das unidades, 2 das máquinas quebraram, e a produção foi automaticamente interrompida em todas as máquinas. Após a retomada do trabalho, o restante das unidades foi produzido pelas 4 máquinas não quebradas, nas mesmas condições iniciais. Dessa forma, contando apenas o tempo em que as máquinas estiveram em funcionamento, a produção toda foi concluída em um período de tempo de, aproximadamente,

- a) 6 horas e 50 minutos.
- b) 6 horas e 35 minutos.
- c) 6 horas e 20 minutos.
- d) 6 horas e 05 minutos.
- e) 5 horas e 50 minutos.

61. (VUNESP 2018/CM de Dois Córregos)

Em uma indústria, 20 máquinas iguais, de mesmo rendimento, produzem juntas 5.000 parafusos iguais, em meia hora de funcionamento simultâneo e ininterrupto. Desse modo, para produzir 1000 unidades dos mesmos parafusos em uma hora, seria necessário o funcionamento, nas mesmas condições operacionais, de apenas

- a) 2 máquinas.
- b) 3 máquinas.
- c) 5 máquinas.
- d) 6 máquinas.
- e) 8 máquinas.

62. (VUNESP 2018/CM de Indaiatuba)

Em um atelier, 15 artesãos, trabalhando 6 horas por dia, durante 8 dias, pintam 240 caixas de lembranças. Com a mesma capacidade de trabalho que os artesãos anteriores, outros 12 artesãos, trabalhando 10 horas por dia, durante 12 dias, pintarão um total das mesmas caixas de lembranças igual a

- a) 240.
- b) 360.
- c) 480.
- d) 540.
- e) 600.

63. (VUNESP 2018/CM de São José dos Campos)

Uma determinada máquina fabrica 24 unidades de um determinado produto em uma hora e meia de funcionamento ininterrupto. Três máquinas idênticas à anterior, trabalhando juntas, nas mesmas condições de funcionamento, fabricarão 100 unidades desse mesmo produto em

- a) 1 hora e 12 minutos.
- b) 1 hora e 34 minutos.
- c) 1 hora e 50 minutos.
- d) 2 horas e 05 minutos.
- e) 2 horas e 17 minutos.

64. (VUNESP 2018/PM-SP)

Uma máquina trabalhando ininterruptamente 5 horas por dia produz um lote de peças em 3 dias. Para que esse mesmo lote fique pronto em 2 dias, o tempo que essa máquina terá que trabalhar diariamente, de forma ininterrupta, é de

- a) 7 horas e 05 minutos.
- b) 7 horas e 30 minutos.
- c) 7 horas e 50 minutos.
- d) 6 horas e 45 minutos.
- e) 6 horas e 35 minutos.

65. (VUNESP 2018/Pref. de Suzano)

Para imprimir um lote de panfletos, uma gráfica utiliza apenas uma máquina, trabalhando 5 horas por dia durante 3 dias. O número de horas diárias que essa máquina teria que trabalhar para imprimir esse mesmo lote em 2 dias seria

- a) 8,0.
- b) 7,5.
- c) 7,0.
- d) 6,5.
- e) 6,0.

66. (VUNESP 2017/TJ-SP)

Em determinada região, para cada 90 pessoas que contraíram uma doença e sobreviveram, 8 contraíram a mesma doença e morreram em decorrência dela. Se considerarmos 4 mil mortes decorridas por aquela doença, então é verdade que o número total de pessoas que a contraíram seria de

- a) 45 000.
- b) 46 000.
- c) 47 000.
- d) 48 000.
- e) 49 000.

67. (VUNESP 2018/UNESP)

Com 48 kg de comida estocada, 15 pessoas podem permanecer isoladas durante 28 dias. Considerando que haja proporcionalidade de consumo, com 60 kg de comida estocada, 35 pessoas podem permanecer isoladas durante um número de dias igual a

- a) 35.
- b) 32.

- c) 21.
- d) 15.
- e) 12.

68. (VUNESP 2017/CRBio-01)

Uma plantação requer pulverizações semanais de certo defensivo agrícola. Se uma tonelada desse defensivo pulveriza 2 alqueires durante 4 semanas, então o número de toneladas necessárias para pulverizar 3 alqueires durante 10 semanas será igual a

- a) 3,75.
- b) 3,5.
- c) 3,25.
- d) 3.
- e) 2,75.

69. (VUNESP 2017/CM de Cotia)

Para imprimir 200 apostilas com 27 páginas cada uma, 5 impressoras levam 54 minutos. Estas impressoras imprimem um mesmo número de páginas por minuto e têm sistema automático de alimentação de folhas, ou seja, não precisam parar para o reabastecimento de folhas.

Para a impressão de 1 040 apostilas com 35 páginas impressas cada uma, em 52 minutos, será necessário um número dessas impressoras igual a

- a) 30.
- **b)** 35.
- **c)** 40.
- d) 45.
- e) 50.

70. (VUNESP 2017/IPRESB)

Para imprimir 300 apostilas destinadas a um curso, uma máquina de fotocópias precisa trabalhar 5 horas por dia durante 4 dias. Por motivos administrativos, será necessário imprimir 360 apostilas em apenas 3 dias. O número de horas diárias que essa máquina terá que trabalhar para realizar a tarefa é

- **a)** 6.
- **b)** 7.
- c) 8.
- **d)** 9.
- **e)** 10.

71. (VUNESP 2017/MP-SP)

Para organizar as cadeiras em um auditório, 6 funcionários, todos com a mesma capacidade de produção, trabalharam por 3 horas. Para fazer o mesmo trabalho, 20 funcionários, todos com o mesmo rendimento dos iniciais, deveriam trabalhar um total de tempo, em minutos, igual a

- a) 54.
- b) 48.
- c) 52.
- d) 46.
- e) 50.

72. (VUNESP 2016/CM de Guaratinguetá)

Para transportar determinada quantidade de areia, um depósito utiliza 3 caminhões, todos com a mesma capacidade, que demoram 10 dias para realizar o serviço. Para que essa mesma quantidade de areia seja transportada em 6 dias, o número de caminhões a mais, com a mesma capacidade dos anteriores, que precisarão ser utilizados é

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

73. (VUNESP 2016/CM de Pradópolis)

Um grupo de estudantes gastou 18 dias, trabalhando 4 horas por dia, para escrever 120 páginas do TCC (Trabalho de Conclusão de Curso). O professor orientador, no entanto, considerou que o número de páginas era insuficiente e solicitou que esse mesmo grupo produzisse mais 160 páginas. O grupo atendeu à solicitação do professor, reuniu-se e passou a escrever as páginas complementares solicitadas, trabalhando 6 horas por dia. Para fazer o TCC completo foi preciso um total de

- a) 8 dias.
- b) 12 dias.
- c) 16 dias.
- d) 20 dias.
- e) 34 dias.

74. (VUNESP 2016/CM de Pradópolis)

Uma torneira, despejando 3,5 litros de água por minuto, enche uma caixa em 2 horas. Uma outra torneira que despeja 2 litros de água por minuto encherá uma caixa de mesma capacidade em

a) 1h 50min.

- b) 2h 35min.
- c) 2h 50min.
- d) 3h 50min.
- e) 3h 30min.

75. (VUNESP 2016/Pref. de Itápolis)

Trabalhando durante 8 horas diárias, 8 máquinas iguais produzem 2 400 unidades de certa peça por dia. Se a jornada de trabalho diária for aumentada para 10 horas, o número de máquinas necessárias para produzir 4 500 unidades dessa peça por dia será igual a

- a) 9.
- b) 10.
- c) 11.
- d) 12.
- e) 14.

76. (VUNESP 2016/IPREF-Guarulhos)

Determinada máquina imprime 60 livretos por hora e leva 5 horas e 40 minutos para imprimir um lote desses livretos. Após reparos nessa máquina, ela passou a imprimir 80 livretos por hora então, para imprimir um novo lote de livretos igual ao anterior, o tempo que ela irá gastar será de

- a) 4 horas e 15 minutos.
- b) 4 horas e 35 minutos.
- c) 4 horas e 50 minutos.
- d) 5 horas e 05 minutos.
- e) 5 horas e 20 minutos.

GABARITO SEM COMENTÁRIO

- 01. B
- 02. C
- 03. D
- 04. B
- 05. B
- 06. D
- 07. E
- 08. E
- 09. C
- 10. B
- 11. C
- . . .
- 12. D
- 13. A
- 14. D
- 15. A
- 16. A 17. B
- 17.0
- 18. C
- 19. D 20. C
- 20. C
- 22. E
- 22. L
- 23. E 24. E
- 25. C
- 26. C
- 27. E
- 28. A
- 29. B
- 30. D
- 31. C
- 31. C
- 32. E 33. E
- 34. E
- 35. C
- 36. C
- 37. C
- 38. E
- 39. C

Brunno Lima, Guilherme Neves Aula 00

- 40. C
- 41. E
- 42. E
- 43. C
- 44. E
- 45. C
- 46. E
- 47. C
- 48. E
- 49. C
- 50. C 51. C
- 52. C
- 53. E
- 54. C
- 55. E
- 56. C
- 57. C
- 58. C
- 59. C
- 60. A
- 61. A
- 62. C
- 63. D
- 64. B
- 65. B
- 66. E
- 67. D
- 68. A
- 69. B
- 70. C
- 71. A
- 72. B
- 73. E
- 74. E
- 75. D
- 76. A

LISTA DE QUESTÕES DE CONCURSOS ANTERIORES COM COMENTÁRIOS

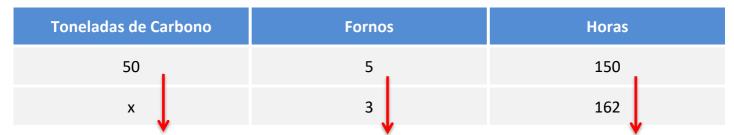
(FCC 2018/TRT - 2ª Região)

Em um julgamento sobre danos ambientais, a acusação apresentou o dado de que os 5 fornos de uma olaria consumiam 50 toneladas de carbono trabalhando 10 horas diárias por 15 dias. A defesa propõe reduzir as atividades da olaria para 3 fornos trabalhando 9 horas diárias por 18 dias. Comparando o consumo de carbono da situação apresentada pela acusação (15 dias, 5 fornos, 10 horas diárias) com a situação proposta pela defesa (18 dias, 3 fornos, 9 horas diárias), houve uma redução do consumo de carbono, em toneladas, de

- (A) 12,4
- (B) 17,6
- (C) 32,4
- (D) 28,6
- (E) 20,4

Resolução

Na primeira situação, os fornos trabalham 10 x 15 = 150 horas.


Na segunda situação, os fornos trabalham $9 \times 18 = 162$ horas.

Vamos montar a tabela.

Toneladas de Carbono	Fornos	Horas
50	5	150
x	3	162

Diminuindo a quantidade de fornos, diminuirá também a quantidade de toneladas de carbono. As grandezas são diretamente proporcionais.

Entretanto, a quantidade de horas de funcionamento dos fornos aumentou. Assim, aumentará também a quantidade de toneladas de carbono. As grandezas são diretamente proporcionais.

Agora é só montar a proporção.

$$\frac{50}{x} = \frac{5}{3} \cdot \frac{150}{162}$$

$$\frac{50}{x} = \frac{5}{1} \cdot \frac{50}{162}$$
$$\frac{50}{x} = \frac{250}{162}$$
$$250x = 50 \cdot 162$$
$$250x = 8.100$$

x = 32,4 toneladas

A redução foi de 50 - 32,4 = 17,6 toneladas de carbono.

Gabarito: B

(FCC 2018/ TRT - 2ª Região)

Para preparar um certo número de caixas, 15 funcionários de uma empresa trabalharam durante 8 horas, cada um preparando 7 caixas a cada 20 minutos. Já cansados, três dos funcionários foram embora e os que ficaram trabalharam por mais 6 horas, mais lentos, cada um deles preparando 7 caixas a cada 40 minutos. Ao todo, nessas 14 horas os funcionários conseguiram preparar um número de caixas

- (A) entre 3150 e 3200
- (B) entre 3200 e 3250
- (C) entre 3250 e 3300
- (D) entre 3300 e 3350
- (E) entre 3350 e 3400

Resolução

Na primeira situação, cada um prepara 7 caixas a cada 20 minutos. Assim, cada um prepara 3 x 7 = 21 caixas por hora. Em 8 horas, cada um preparou 21 x 8 = 168 caixas. Como são 15 funcionários, o total de caixas preparadas foi 15 x 168 = 2.520 caixas.

Na segunda situação, cada funcionário prepara 7 caixas a cada 40 minutos. Assim, cada um deles prepara 3,5 caixas a cada 20 minutos. Em 1 hora, cada um deles prepara 7 caixas + 3,5 caixas = 10,5 caixas. Em 6 horas, cada um deles prepara 6 x 10,5 = 63 caixas. Como são 12 funcionários, o total de caixas preparadas foi 12 x 63 = 756 caixas.

Nas 14 horas, foram preparadas 2.520 + 756 = 3.276 caixas.

Gabarito: C

(FCC 2018/TRT - 2ª REGIÃO)

Quinze fiscais iam vistoriar todos os estabelecimentos comerciais da zona sul da cidade em 25 dias, trabalhando 8 horas por dia cada um e todos com mesma produtividade. Depois de 5 dias completos desse serviço, a superintendência regional solicitou, em regime de urgência e com pagamento de hora extra, que os 15 funcionários passassem a trabalhar 10 horas por dia para finalizar a vistoria em menos dias do que os 25. Considerando que a solicitação foi atendida e que os funcionários continuaram o trabalho com mesma produtividade, a vistoria completa dos estabelecimentos comerciais da zona sul ocorreu em um total de

- (A) 20 dias.
- (B) 17 dias.
- (C) 19 dias.
- (D) 21 dias.
- (E) 18 dias.

Resolução

Tome muito cuidado com esta questão. Não podemos comparar dizendo 25 dias/8 horas por dia com (x dias/10 horas por dia). Não podemos comparar assim porque a quantidade de trabalho a ser realizado em 25 dias não é a mesma quantidade de trabalho a ser realizado na situação final.

Devemos fazer a comparação quando o trabalho a ser realizado é o mesmo, ou seja, passados os 5 dias.

Os 15 fiscais iam vistoriar em 25 dias. Depois de 5 dias, mudou o regime de trabalho.

Depois dos 5 dias, 15 fiscais, trabalhando 8 horas por dia, têm 20 dias para concluir o serviço. Entretanto, depois dos 5 dias, os 15 fiscais vão trabalhar 10 horas por dia. Quantos dias levarão para concluir o serviço?

Horas por dia	Dias
8	20
10	Х

Se os fiscais vão trabalhar mais horas por dia, eles levarão menos dias para concluir o serviço. As grandezas são inversamente proporcionais porque uma aumenta e a outra diminui.

Horas por dia	Dias	
8 🔥	20	
10	х	
$\frac{20}{x} = \frac{10}{8}$ $10x = 8 \cdot 20$		
x = 16		

Como já se passaram 5 dias, o tempo total é igual a 5 + 16 = 21 dias.

Gabarito: D

(FCC 2018/SABESP)

Um reservatório com volume igual a 240 m³ está sendo abastecido de forma ininterrupta a uma velocidade de 150 L/s. O tempo aproximado para abastecer 2/3 deste reservatório é, em h,

- (A) 3,0
- (B) 0,3
- (C) 30
- (D) 0,15
- (E) 1,5

Resolução

É importante saber que 1 m 3 = 1.000 litros. Desta forma, 240 m 3 = 240.000 litros.

$$\frac{2}{3}$$
 de 240.000 litros = $\frac{2}{3}$ · 240.000 = 160.000 litros

A velocidade é de 150 litros por segundo. Isto quer dizer que em 1 segundo o volume jorrado é de 150 litros. Queremos saber o tempo para que sejam jorrados 160.000 litros.

Litros	Segundos
150	1
160.000	x

Como o volume de água aumentou, o tempo também aumentará. As grandezas são diretamente proporcionais.

$$\frac{1}{x} = \frac{150}{160.000}$$

$$150x = 160.000$$

$$x = \frac{160.000}{150} \cong 1.066 segundos$$

Queremos transformar este tempo para hora. Cada minuto possui 60 segundos e cada hora possui 60 minutos. Assim, cada hora possui $60 \times 60 = 3.600$ segundos.

Para transformar o tempo calculado para horas, basta dividir por 3.600.

$$x \cong \frac{1.066}{3.600} \cong 0,296 \ h$$

O valor mais próximo dentre as alternativas é 0,3h.

Gabarito: B

Nas obras de pavimentação de uma rodovia, a quantidade de quilômetros de estrada pavimentados em uma semana é proporcional tanto ao número de funcionários trabalhando, quanto à jornada diária de trabalho de cada um deles. Se 20 funcionários, trabalhando 8 horas por dia cada um, pavimentam 15 quilômetros de rodovia em uma semana, para pavimentar exatamente 21 quilômetros de rodovia em uma semana, a jornada diária de trabalho de 32 funcionários deverá ser de

- (A) 4 horas.
- (B) 7 horas.
- (C) 6 horas.
- (D) 5 horas.
- (E) 11 horas.

Resolução

Vamos montar uma tabela para comparar as grandezas.

Funcionários	Horas/dia	Quilômetros
20	8	15
32	х	21
	V	

Como há mais funcionários trabalhando, a jornada diária pode ser menor. Assim, as grandezas são inversamente proporcionais.

Como o tamanho da estrada é maior, a jornada diária de trabalho precisa aumentar. As grandezas são diretamente proporcionais.

Funcionário	Horas/d	ia	Quilôme	tros
20	8		15	
32	х		21	,

$$\frac{8}{x}=\frac{32}{20}\cdot\frac{15}{21}$$

Podemos simplificar as frações. A fração 32/20 pode ser simplificada por 4 e 15/21 pode ser simplificada por 3.

$$\frac{8}{x} = \frac{8}{5} \cdot \frac{5}{7}$$

$$\frac{8}{x} = \frac{8}{7}$$

$$x = 7$$

Gabarito: B

(FCC 2018/SABESP)

Um auxiliar de escritório recebeu a tarefa de arquivar 1.200 dossiês de um escritório de advocacia. Logo que começou, fez alguns cálculos e estimou que demoraria cerca de 16 horas para arquivar os 1.200 dossiês. Após arquivar metade deles, recebeu a notícia de que outros 250 dossiês adicionais também deveriam ser arquivados. Refazendo as contas, o auxiliar concluiu que, no mesmo ritmo de trabalho, além das 8 horas que já havia gasto no serviço, levaria, para completá-lo, outras

- (A) 9 horas e 40 minutos.
- (B) 8 horas.
- (C) 3 horas e 20 minutos.
- (D) 11 horas e 20 minutos.
- (E) 16 horas.

Resolução

Ele levou 8 horas para arquivar 600 dossiês. Isto foi metade do trabalho. Ao chegar à metade, ele recebeu 250 dossiês adicionais. Assim, ele precisa arquivar 850 dossiês. Em quanto tempo fará isso?

Dossiês	Horas
600	8
850	X

Como a quantidade de dossiês aumentou, aumentará também a quantidade de horas. As grandezas são diretamente proporcionais.

$$\frac{8}{x} = \frac{12}{17}$$

$$12x = 8 \cdot 17$$

$$x = \frac{136}{12}$$

Vamos simplificar esta fração.

$$x = \frac{68}{6} = \frac{34}{3} horas$$

Precisamos dividir 34 horas por 3.

O quociente foi 11 horas e o resto foi 1 hora. O resto de 1 hora é igual a 60 minutos. Dividindo 60 minutos por 3 encontramos 20 minutos. Portanto,

$$x = 11h20min$$

Gabarito: D

(FCC 2018/TRT - 6ª Região)

Uma equipe de 25 trabalhadores foi contratada para realizar uma obra em 14 dias. Passados 9 dias, a equipe só havia realizado 3/7 da obra. O coordenador da obra decidiu que irá contratar mais trabalhadores, com o mesmo ritmo de trabalho dos 25 que já estão na obra, para dar conta de terminá-la exatamente no prazo contratado. Sendo assim, o coordenador deve contratar um número mínimo de trabalhadores igual a

- (A) 36.
- (B) 28.
- (C) 32.
- (D) 42.
- (E) 35.

Resolução

Sabemos que 25 trabalhadores em 9 dias realizaram 3/7 de uma obra.

Desta forma, ainda faltam completar 4/7 da obra. Este restante será realizado em 5 dias por x funcionários.

Fração da obra	Dias	Funcionários
3/7	9	25
4/7	5	x

Podemos cortar o denominador 7 da fração da obra.

Fração da obra	Dias	Funcionários
3	9	25
4	5	x

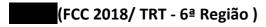
Como a fração da obra aumentou, precisamos de mais funcionários. As grandezas são diretamente proporcionais.

A quantidade de dias diminuiu. Assim, precisaremos de mais funcionários. Como uma grandeza diminui enquanto a outra aumenta, elas são inversamente proporcionais.

Fração da obra	Dias	Funcionários
3	9	25
4	5	x

Agora é só montar a proporção.

$$\frac{25}{x} = \frac{3}{4} \cdot \frac{5}{9}$$


$$\frac{25}{x} = \frac{15}{36}$$

$$15x = 25 \cdot 36$$

$$x = 60$$

Precisaremos de 60 funcionários. Com já havia 25 funcionários, então precisamos de 60 - 25 = 35 funcionários novos.

Gabarito: E

Em uma obra de construção civil, 12 operários com a mesma velocidade de trabalho, azulejaram x m^2 de paredes em 2 horas e 45 minutos. No dia seguinte, 3 dentre os 12 operários do dia anterior, azulejarão x/3 m^2 de paredes em um tempo igual a

- (A) 4 horas e 10 minutos.
- (B) 2 horas e 55 minutos.
- (C) 3 horas e 15 minutos.
- (D) 4 horas e 30 minutos.
- (E) 3 horas e 40 minutos.

Resolução

O valor de x não influencia na resposta. Vamos, assim, colocar x = 3.

Desta forma, 12 operários azulejaram 3 m^2 de paredes em 2h45min. Este tempo é igual a 2 x 60 min + 45 min = 165 minutos.

Queremos saber o tempo que 3 operários levarão para azulejar $x/3 = 3/3 = 1 \text{ m}^2$.

Operários	m²	Minutos
12	3	165
3	1	x 🗸

A quantidade de operários diminuiu, o que indica que eles levarão mais tempo para concluir o serviço. As grandezas são inversamente proporcionais.

A área a ser azulejada diminuiu. Assim, eles levarão menos tempo para concluir o serviço. Como as duas grandezas diminuíram, elas são diretamente proporcionais.

Operários	m²	Minutos
12 🔥	3	165
3	1 🔻	x 🗸

$$\frac{165}{x} = \frac{3}{12} \cdot \frac{3}{1}$$

$$\frac{165}{x} = \frac{1}{4} \cdot \frac{3}{1}$$

$$\frac{165}{x} = \frac{3}{4}$$

$$3x = 4 \cdot 165$$

$$3x = 660$$

$$x = 220 min = 3h40min$$

Gabarito: E

(FCC 2017 / DPE-RS)

Um grupo de 8 funcionários analisou 32 propostas de reestruturação de um determinado setor de uma empresa em 16 horas de trabalho. Para analisar 48 dessas propostas, em 12 horas de trabalho, um outro grupo de funcionários, em igualdade de condições do grupo anterior, deverá ser composto por um número de pessoas igual a

- (A) 18.
- (B) 12.
- (C) 16.
- (D) 14.
- (E) 20

Resolução

Vamos montar uma tabela para comparar as grandezas.

Funcionários	Propostas	Horas de trabalho
8	32	16 \uparrow
x	48	12

Como a quantidade de propostas aumentou, aumentará também a quantidade de funcionários. As grandezas são diretamente proporcionais.

Como o tempo diminuiu, vamos precisar de mais funcionários. Como uma grandeza diminui enquanto a outra aumenta, elas são inversamente proporcionais.

$$\frac{8}{x} = \frac{32}{48} \cdot \frac{12}{16}$$

A fração 32/48 pode ser simplificada por 16 e a fração 12/16 pode ser simplificada por 4.

$$\frac{8}{x} = \frac{2}{3} \cdot \frac{3}{4}$$

Podemos cortar 3 com 3. Finalmente 2/4 = 1/2. Assim,

$$\frac{8}{x} = \frac{1}{2}$$

$$x = 2 \cdot 8 = 16$$

Gabarito: C

(FCC 2017/ DPE-RS)

Sabe-se que em uma empresa, 19% dos funcionários se deslocam para o trabalho utilizando automóvel. Os demais funcionários, em número de 1053, utilizam transporte público, bicicleta ou se deslocam para o trabalho caminhando. O número de funcionários que utilizam automóvel para se deslocar para o trabalho é

- (A) 263
- (B) 247
- (C) 195
- (D) 321
- (E) 401

Resolução

Esta questão é, na verdade, uma questão sobre porcentagem. Entretanto, coloquei aqui nesta aula para que você possa ver que a regra de três pode ser utilizada para resolver questões sobre porcentagem.

Quando a regra de três, como neste caso, for para comparar quantidades e percentuais, as grandezas serão sempre diretamente proporcionais. É claro, se aumenta o percentual de pessoas, aumentará também o número de pessoas.

Sabemos que 100% - 19% = 81% das pessoas utilizam transporte público, bicicleta ou vão caminhando. Este número corresponde a 1.053.

Percentual (%)	Quantidade de pessoas
81	1.053
19	X

$$\frac{1.053}{x} = \frac{81}{19}$$

$$81x = 19 \cdot 1.053$$

$$x = \frac{19 \cdot 1.053}{81} = 247$$

Gabarito: B

(FCC 2016/AL-MS)

O preço de um produto em uma embalagem cuja capacidade é de 1,2 L é R\$ 35,00. O mesmo produto, vendido em uma embalagem cuja capacidade é de 250 mL, custa R\$ 7,00. Para que o preço desse produto, vendido na embalagem de 1,2 L, seja proporcional ao preço do produto vendido na embalagem menor é necessário

- (A) aumentá-lo em R\$ 2,40.
- (B) reduzi-lo em R\$ 4,80.
- (C) reduzi-lo em R\$ 1,40.
- (D) mantê-lo como está.
- (E) aumentá-lo em R\$ 3,20.

Resolução

Observe que 1,2 L = 1.200 mL.

Se 250 mL são vendidos a 7 reais, por quanto deveria ser vendida a embalagem com 1.200 mL?

mL	R\$
250	7
1.200	x

Aumentando a capacidade da embalagem, aumentará também o preço. As grandezas são diretamente proporcionais.

$$\frac{7}{x} = \frac{250}{1.200}$$

$$\frac{7}{x} = \frac{25}{1.20}$$

$$25x = 7 \cdot 120$$

$$25x = 840$$

$$x = 33,60$$

Como a embalagem de 1,2L estava sendo vendida por R\$ 35,00, então devemos reduzir o preço em 35 - 33,60 = R\$ 1,40.

Gabarito: C

(FCC 2016/AL-MS)

O planejamento de uma excursão mostra que há mantimento suficiente para que 21 excursionistas façam 3 refeições diárias durante 48 dias. Após um último encontro de planejamento, decidiram que o regime de alimentação dos excursionistas seria de apenas 2 refeições diárias. Com essa alteração no número de refeições diárias foram admitidos mais 7 excursionistas para a viagem. Dessa maneira, a duração máxima da excursão, sem faltar mantimento, poderá ser

- (A) aumentada em 12 dias.
- (B) reduzida em 8 dias.
- (C) reduzida em 9 dias.
- (D) aumentada em 6 dias.
- (E) a mesma.

Resolução

Vamos montar a tabela para comparar as grandezas.

Excursionistas	Refeições diárias	Dias
21 \uparrow	³ ↑	48
28	2	×

Como a quantidade de excursionistas aumentou, a quantidade de dias com refeições disponíveis vai diminuir. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A quantidade de refeições diárias diminuiu. Assim, os mantimentos vão durar mais dias. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

$$\frac{48}{x} = \frac{28}{21} \cdot \frac{2}{3}$$

A fração 28/21 pode ser simplificada por 7.

$$\frac{48}{x} = \frac{4}{3} \cdot \frac{2}{3}$$

$$\frac{48}{x} = \frac{8}{9}$$

$$8x = 48 \cdot 9$$

$$x = 54$$

A comida antes era suficiente para 48 dias. Agora será suficiente para 54 dias. Portanto, a excursão pode ser aumentada em 6 dias.

Gabarito: D

(FCC 2016/SEGEP-MA)

Em um acampamento foi providenciado suprimento suficiente para que 15 acampantes possam fazer três refeições completas por dia durante 42 dias. Ao invés de chegarem 15 acampantes, chegaram 35. Após uma conversa entre eles, decidiram que cada acampante teria direito a apenas duas refeições completas por dia. Desta maneira, o número de dias a menos que o novo grupo ficará no acampamento é igual a

- (A) 15.
- (B) 32.
- (C) 26.
- (D) 9.
- (E) 18.

Resolução

Vamos montar a tabela.

Acampan	tes	Refeições c	liárias	Dias	
15	•	3		42	
35		2		х	,

Como a quantidade de acampantes aumentou, a quantidade de dias com refeições disponíveis vai diminuir. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A quantidade de refeições diárias diminuiu. Assim, os mantimentos vão durar mais dias. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

$$\frac{42}{x} = \frac{35}{15} \cdot \frac{2}{3}$$

A fração 35/15 pode ser simplificada por 5.

$$\frac{42}{x} = \frac{7}{3} \cdot \frac{2}{3}$$

$$\frac{42}{x} = \frac{14}{9}$$

$$14x = 42 \cdot 9$$

$$x = 27 dias$$

Antes havia comida suficiente para 42 dias. Eles terão que ficar 42 - 27 = 15 dias a menos.

Gabarito: A

(FCC 2016/COPERGAS-PE)

Com 15 máquinas de asfaltar ruas, a prefeitura de uma cidade pode terminar a obra que pretende fazer em exatos 42 dias de trabalho. O prefeito pretende diminuir esse prazo e está disposto a trazer mais máquinas, além das 15 máquinas disponíveis, para executarem essa obra em 35 dias. O número de máquinas, que o prefeito precisará acrescentar para conseguir o seu intento, é igual a

- (A) 5.
- (B) 9.
- (C) 4.
- (D) 3.
- (E) 7.

Resolução

Vamos montar a tabela para calcular o número de máquinas necessárias.

Máquinas	Dias
15	42 🔥
x	35

Como a quantidade de dias diminuiu, precisamos aumentar o número de máquinas. Como uma grandeza diminui enquanto a outra aumenta, elas são inversamente proporcionais.

$$\frac{15}{x} = \frac{35}{42}$$

A fração 35/42 pode ser simplificada por 7.

$$\frac{15}{x} = \frac{5}{6}$$

$$5x = 6 \cdot 15$$

$$x = 18$$

Como já havia 15 máquinas, precisaremos de 3 máquinas adicionais.

Gabarito: D

(FCC 2016/ TRF - 3ª REGIÃO)

Uma indústria produz um tipo de máquina que demanda a ação de grupos de funcionários no preparo para o despacho ao cliente. Um grupo de 20 funcionários prepara o despacho de 150 máquinas em 45 dias. Para preparar o despacho de 275 máquinas, essa indústria designou 30 funcionários. O número de dias gastos por esses 30 funcionários para preparem essas 275 máquinas é igual a

- (A) 55.
- (B) 36.
- (C) 60.

(E) 48.

Resolução

Funcionários	Máquinas	Dias
20	150	45
30	275	х

Vamos simplificar as colunas. 20 e 30 podem ser simplificados por 10. 150 e 275 podem ser simplificados por 25.

Funcionários	Máquinas	Dias
2	6	45
3	11 🗸	x

Aumentando a quantidade de funcionários, a quantidade de dias diminuirá (inversamente proporcionais).

Aumentando a quantidade de máquinas a serem despachadas, aumentará a quantidade de dias (diretamente proporcionais).

$$\frac{45}{x} = \frac{3}{2} \cdot \frac{6}{11}$$

$$\frac{45}{x} = \frac{18}{22}$$

$$18x = 990$$

$$x = 55$$

Gabarito: A

(FCC 2016/ TRF - 3ª REGIÃO)

Uma empresa pavimentadora de ruas utiliza uma máquina que retira o asfalto antigo na razão de 3 metros lineares de rua a cada 8 minutos. O tempo que essa máquina gastará para retirar o asfalto de 3,75 km lineares de rua, de forma ininterrupta, equivale a

- (A) 6 dias, 22 horas e 40 minutos.
- (B) 6 dias, 6 horas e 16 minutos.
- (C) 6 dias, 16 horas e 16 minutos.
- (D) 6 dias, 1 hora e 20 minutos.
- (E) 6 dias, 8 horas e 30 minutos.

Resolução

São 3 metros lineares a cada 8 minutos. Queremos calcular o tempo para retirar o asfalto de 3,75km = 3.750 metros.

Metros	Minutos
3	8
3.750	X

Aumentando a quantidade de metros lineares de asfalto, aumentaremos também o tempo. As grandezas são diretamente proporcionais.

$$\frac{8}{x} = \frac{3}{3.750}$$

$$3x = 8 \cdot 3.750$$

$$3x = 30.000$$

$$x = 10.000$$

Dividindo por 60, transformaremos para horas.

10.000 min | 60 .

40 min 166 horas

x = 166 horas e 40 minutos

Para transformar 166 horas para dias, vamos dividir por 24.

166 horas | 24 .

22 horas 6 dias

x = 6 dias, 22 horas e 40 minutos.

Gabarito: A

Um tanque com 5 000 litros de capacidade estava repleto de água quando, às 00:00 hora de um certo dia, a água começou a escapar por um furo à vazão constante. À 01:00 hora desse mesmo dia, o tanque estava com 4 985 litros de água, e a vazão de escape da água permaneceu constante até o tanque se esvaziar totalmente, dias depois. O primeiro instante em que o tanque se esvaziou totalmente ocorreu em um certo dia às

- (A) 14 horas e 20 minutos.
- (B) 21 horas e 20 minutos.
- (C) 18 horas e 40 minutos.
- (D) 14 horas e 40 minutos.
- (E) 16 horas e 20 minutos.

Resolução

Em um período de 1 horas o tanque deixou escapar 5.000 - 4.985 = 15 litros.

Para esvaziar completamente o tanque, serão necessários 5.000/15 horas = 1.000/3 horas.

Se você não percebeu que bastava dividir, poderia ter feito uma regrinha de três.

Horas	Litros
1	15
x	5.000

Aumentando a quantidade de litros, devemos aumentar a quantidade de horas. As grandezas são diretamente proporcionais.

$$\frac{1}{x} = \frac{15}{5.000}$$

$$15x = 5.000$$

$$x = \frac{5.000}{15} = \frac{1.000}{3} horas$$

Vamos dividir 1.000 horas por 3.

Tivemos um resto de uma hora. Ora, 1 hora = 60 minutos. Dividindo 60 por 3 temos resto igual a 20 minutos. Assim,

$$x = \frac{5.000}{15} = \frac{1.000}{3} horas = 333 horas 20min$$

Este é o tempo necessário para esvaziar o tanque.

Vamos ver quantos dias se passaram? Para tanto, vamos dividir 333 por 24.

Concluímos que o nosso tempo de 333 horas 20 min é igual a 13 dias 21 horas e 20 minutos.

Como o tanque começou a esvaziar à meia noite de um determinado dia, deveremos esperar 13 dias completos e mais 21 horas e 20 minutos do 14º dia.

Gabarito: B

(FCC 2014/TRF 3ª Região)

Sabe-se que uma máquina copiadora imprime 80 cópias em 1 minuto e 15 segundos. O tempo necessário para que 7 máquinas copiadoras, de mesma capacidade que a primeira citada, possam imprimir 3 360 cópias é de

- (A) 15 minutos.
- (B) 3 minutos e 45 segundos.
- (C) 7 minutos e 30 segundos.
- (D) 4 minutos e 50 segundos.
- (E) 7 minutos.

Resolução

Vamos montar uma tabela. Para evitar trabalhar com frações, transformarei o tempo para segundos. Observe que 1 minuto e 15 segundos é igual a 60 + 15 = 75 segundos.

Máquina	Cópias	Segundos
1	80	75
7	3.360	x 🗸

Vamos comparar as outras grandezas com a coluna dos segundos.

O número de máquinas aumentou. Assim, o tempo em segundos deve diminuir. As grandezas são inversamente proporcionais e a setinha fica para cima.

A quantidade de cópias aumentou. O tempo em segundos deverá aumentar. As grandezas são diretamente proporcionais e a setinha fica para baixo.

Máquina	Cópias	Segundos
1 🛦	80	75
7	3.360 🗸	x 🗸

Vamos agora armar a proporção.

$$\frac{75}{x} = \frac{7}{1} \cdot \frac{80}{3.360}$$

$$\frac{75}{x} = \frac{560}{3.360}$$

Observe que 3.360 dividido por 80 é igual a 6.

$$\frac{75}{x} = \frac{1}{6}$$

$$x = 6 \cdot 75 = 450$$
 segundos

Para transformar em minutos, devemos dividir 450 por 60.

x = 7 minutos 30 segundos

Gabarito: C

(FCC 2014/Câmara Municipal de São Paulo)

O trabalho de varrição de 6.000 m² e calçadas é feita em um dia de trabalho por 18 varredores trabalhando 5 horas por dia. Mantendo-se as mesmas proporções, 15 varredores varrerão 7.500 m² de calçadas, em um dia, trabalhando por dia, o tempo de

- (A) 8 horas e 15 minutos.
- (B) 9 horas.
- (C) 7 horas e 45 minutos.
- (D) 7 horas e 30 minutos.
- (E) 5 horas e 30 minutos.

Resolução

Vamos montar uma tabelinha para resolver a regra de três.

m²	varredores	horas/dia
6.000	18	5
7.500	15	X

Vamos simplificar as colunas. A primeira coluna pode ser simplificada por 100. Ficamos com 60 e 75. Depois podemos simplificar por 15. Ficamos com 4 e 5.

A segunda coluna pode ser simplificada por 3. Ficamos com 6 e 5.

m²	varredores	horas/dia
4	6	5
5	5	x 🗸

Vamos comparar as grandezas conhecidas com a grandeza "horas/dia", que é desconhecida. Aumentando a área a ser varrida, devemos aumentar a quantidade de horas por dia. As grandezas são diretamente proporcionais.

Diminuindo a quantidade de varredores, devemos aumentar a quantidade de horas por dia. As grandezas são inversamente proporcionais.

m²	varredores	horas/dia
4	6 ∱	5
5 🗸	5	x 🗸

Vamos armar a proporção.

$$\frac{5}{x} = \frac{4}{5} \cdot \frac{5}{6}$$

$$\frac{5}{x} = \frac{4}{6}$$

$$4x = 30$$

$$x = 7.5 horas = 7h 30min$$

Gabarito: D

(FCC 2018/METRO-SP)

O cozinheiro vai colocar bifes no refeitório de uma empresa para o almoço. Ele sabe que 321 pessoas irão consumir bifes, e que são necessários 5 bifes para cada 3 pessoas. Se os bifes são comprados pelo cozinheiro em bandejas com 6 unidades, o total de bandejas suficientes para suprir as necessidades de bifes desse refeitório no almoço é igual a

(B) 107.

(C) 90.

(D) 86.

(E) 96.

Resolução

Sabemos que são necessários 5 bifes para cada 3 pessoas. O total de pessoas é 321. Vamos calcular a quantidade de bifes para alimentar estas pessoas.

Bifes	Pessoas
5	3
x	321

A quantidade de pessoas aumentou. Assim, precisaremos aumentar a quantidade de bifes. Como as duas grandezas aumentam, elas são diretamente proporcionais.

$$\frac{5}{x} = \frac{3}{321}$$

$$3x = 5 \cdot 321$$

$$x = 535 bifes$$

Os bifes são vendidos em bandejas com 6 unidades. Para calcular a quantidade de bandejas, basta dividir 535 por 6.

$$\frac{535}{6} \approx 89,16 \ bandejas$$

Como não podemos comprar um número fracionário de bandejas, será necessário comprar 90 bandejas.

Gabarito: C

(CESPE 2018/EMAP)

Os operadores dos guindastes do Porto de Itaqui são todos igualmente eficientes. Em um único dia, seis desses operadores, cada um deles trabalhando durante 8 horas, carregam 12 navios.

Com referência a esses operadores, julgue os itens seguintes.

Para carregar 18 navios em um único dia, seis desses operadores deverão trabalhar durante mais de 13 horas.

Resolução

Sabemos que 6 operadores, cada um deles trabalhando 8 horas, carregam 12 navios.

Queremos saber a quantidade de horas que 6 operadores devem trabalhar para carregar 18 navios.

Observe que a quantidade de operadores não mudou. Assim, não precisamos incluir esta grandeza na regra de três.

Em suma: 12 navios são carregados em 8 horas. Em quantas horas serão carregados 18 navios?

Horas	Navios
8	12
Х	18

A quantidade de navios aumentou. Precisaremos aumentar a quantidade de horas para realizar o serviço. Como as duas grandezas aumentaram, elas são diretamente proporcionais.

$$\frac{8}{x} = \frac{12}{18}$$

$$12 \cdot x = 18 \cdot 8$$

$$x = \frac{18 \cdot 8}{12} = 12$$

São necessárias 12 horas para carregar 18 navios.

Gabarito: ERRADO

(CESPE 2018/EMAP)

Os operadores dos guindastes do Porto de Itaqui são todos igualmente eficientes. Em um único dia, seis desses operadores, cada um deles trabalhando durante 8 horas, carregam 12 navios. Com referência a esses operadores, julgue os itens seguintes.

Em um mesmo dia, 8 desses operadores, trabalhando durante 7 horas, carregam mais de 15 navios.

Resolução

Seis desses operadores, cada um deles trabalhando durante 8 horas, carregam 12 navios. Queremos saber quantos navios 8 operadores carregam durante 7 horas.

Operadores	Horas	Navios
6	8	12
8	7	x

Vamos comparar as grandezas conhecidas (operadores e horas) com a grandeza desconhecida (navios).

A quantidade de operadores aumentou. Assim, a quantidade de navios carregados aumentará. Como as duas grandezas aumentam, elas são diretamente proporcionais.

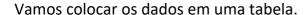
A quantidade de horas trabalhadas diminuiu. Assim, diminuirá também a quantidade de navios carregados. Como as duas grandezas diminuíram, elas são diretamente proporcionais.

12
x

Vamos agora montar a proporção.

$$\frac{12}{x} = \frac{6}{8} \cdot \frac{8}{7}$$
$$\frac{12}{x} = \frac{6}{7}$$
$$6x = 7 \cdot 12$$

$$x = 14 navios$$


Gabarito: ERRADO

(CESPE 2018/IFF)

Se 4 servidores, igualmente eficientes, limpam 30 salas de aula em exatamente 5 horas, então, 8 servidores, trabalhando com a mesma eficiência dos primeiros, limparão 36 salas em exatamente

- A) 7 horas.
- B) 6 horas.
- C) 5 horas.
- D) 4 horas.
- E) 3 horas

Resolução

Servidores	Salas	Horas
4	30	5
8	36	Х

Vamos comparar as grandezas conhecidas (servidores e salas) com a grandeza desconhecida (horas).

A quantidade de servidores aumentou. Eles precisam de menos horas para realizar um serviço. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A quantidade de salas para limpar aumentou. Assim, os servidores precisarão de mais horas para concluir o serviço. Como as duas grandezas estão aumentando, elas são diretamente proporcionais.

Servidores	Salas	Horas
4	30	5
8	36	x

Agora é só montar a proporção.

$$\frac{5}{x} = \frac{8}{4} \cdot \frac{30}{36}$$

Vamos simplificar as frações.

$$\frac{5}{x} = \frac{2}{1} \cdot \frac{5}{6}$$

$$\frac{5}{x} = \frac{10}{6}$$

$$10x = 5 \cdot 6$$

$$x = 3$$

Gabarito: E

Situação hipotética: Em uma empresa de TV a cabo, 12 técnicos que trabalham no mesmo ritmo, 6 horas por dia, atendem toda a demanda de reparo e instalação solicitada pelos clientes diariamente. Entretanto, devido a uma promoção, a demanda dobrou e a empresa passou a estipular que todos os técnicos trabalhassem por 8 horas diárias.

Assertiva: Nessa situação, para atender totalmente à nova demanda, serão necessários, pelo menos, 8 novos técnicos que trabalhem no mesmo ritmo que os demais.

Resolução

Digamos que a demanda inicial tivesse um valor igual a 1. Como a demanda dobrou, colocaremos um valor igual a 2 para a nova demanda.

Técnicos	Horas/dia	Demanda
12	6	1
x	8	2

Vamos comparar as grandezas conhecidas com a grandeza desconhecida.

A quantidade de horas diárias trabalhadas aumentou. Desta forma, a quantidade de técnicos pode diminuir. Com uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A demanda aumentou. Desta forma, precisaremos aumentar a quantidade de técnicos. Como as duas grandezas aumentam, elas são diretamente proporcionais.

Técnicos	Horas/dia	Demanda
12	6 🕇	1
х	8	2

Vamos agora montar a proporção.

$$\frac{12}{x} = \frac{8}{6} \cdot \frac{1}{2}$$

$$\frac{12}{x} = \frac{8}{12}$$

$$8 \cdot x = 12 \cdot 12$$
$$x = 18$$

Precisamos ter 18 funcionários trabalhando. Como já havia 12, precisamos contratar 6 novos funcionários.

Gabarito: ERRADO

Em uma fábrica, 10 empregados igualmente eficientes trabalham 8 horas em um dia e produzem 500 unidades de um produto. Nessa situação, para que sejam produzidas 4.000 unidades desse produto em 4 horas de trabalho em um dia, seriam necessários mais 150 funcionários com a mesma eficiência dos demais.

Resolução

Vamos colocar os dados em uma tabela para calcular quantos funcionários serão necessários.

Empregados	Horas/dia	Produto
10	8	500
X	4	4.000

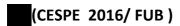
Antes de comparar as grandezas, vamos simplificar as colunas. A segunda coluna pode ser simplificada por 4 e a última coluna pode ser simplificada por 500.

Empregados	Horas/dia	Produto
10	2	1
x 🗸	1	8

A quantidade de horas trabalhadas por dia diminuiu. Assim, precisamos aumentar a quantidade de funcionários. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A quantidade de produtos aumentou. Assim, precisamos aumentar também a quantidade de funcionários. Como as duas grandezas aumentam, elas são diretamente proporcionais.

Empregados	Horas/dia	Produto
10	2	1
x 🗸	1 🕇	8♥


Agora vamos montar a proporção.

$$\frac{10}{x} = \frac{1}{2} \cdot \frac{1}{8}$$

$$\frac{10}{x} = \frac{1}{16}$$
$$x = 10 \cdot 16 = 160$$

Como já havia 10 empregados, precisamos de 150 novos empregados.

Gabarito: CERTO

Diariamente, o tempo médio gasto pelos servidores de determinado departamento para executar suas tarefas é diretamente proporcional à quantidade de tarefas executadas e inversamente proporcional à sua produtividade individual diária P.

Com base nessas informações, julgue os itens a seguir

Considere que na terça-feira a quantidade de tarefas a serem executadas por um servidor correspondia a 50% a mais do que a quantidade de tarefas executadas no dia anterior. Nesse caso, para que o servidor concluísse seu trabalho da terça-feira no mesmo tempo gasto para concluí-lo na segunda-feira, a sua produtividade na terça-feira deveria aumentar em 50% em relação à produtividade da segunda-feira.

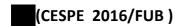
Resolução

Vamos supor que a quantidade de tarefas a serem executadas na segunda-feira foi igual a 10. Assim, a quantidade de tarefas a serem executadas na terça-feira é igual a 15 (50% a mais).

Como queremos que os tempos nos dois dias sejam iguais, não precisamos colocar esta grandeza na tabela da regra de três.

Para termos uma referência, vamos considerar que a produtividade na segunda-feira foi igual a 100.

Produtividade	Tarefas
100	10
x	15


Ora, como temos uma quantidade maior de tarefas a realizar, a produtividade deverá aumentar para manter o tempo de execução. Como as duas grandezas aumentam, elas são diretamente proporcionais.

$$\frac{100}{x} = \frac{10}{15}$$

$$x \cdot 10 = 100 \cdot 15$$
$$x = 150$$

Como a produtividade subiu de 100 para 150, então a produtividade aumentou 50%.

Gabarito: CERTO

Diariamente, o tempo médio gasto pelos servidores de determinado departamento para executar suas tarefas é diretamente proporcional à quantidade de tarefas executadas e inversamente proporcional à sua produtividade individual diária P.

Com base nessas informações, julgue os itens a seguir

Se, na segunda-feira, um servidor gastou 6 horas para executar todas as 15 tarefas a seu encargo e, na sexta-feira, ele gastou 7 horas para executar as suas 18 tarefas, então, nessa situação, o servidor manteve a mesma produtividade nesses dois dias.

Resolução

Vamos considerar, para efeito de comparação, que a produtividade no primeiro dia foi igual a 100.

Produtividade	Horas	Tarefas
100	6	15
X	7	18

A quantidade de horas aumentou. Assim, a produtividade dele diminuiu (para comparar, você considera que a outra grandeza – quantidade de tarefas – é constante). Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

A quantidade de tarefas realizadas aumentou. Isto quer dizer que a produtividade aumentou. AS grandezas são diretamente proporcionais.

Produtividade	Horas	Tarefas
100	6	15
x •	7	18

$$\frac{100}{x} = \frac{7}{6} \cdot \frac{15}{18}$$

$$\frac{100}{x} = \frac{105}{108}$$

$$105 \cdot x = 108 \cdot 100$$

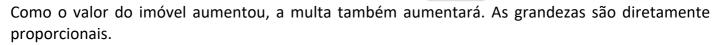
$$x \cong 102,86$$

Gabarito: ERRADO

(CESPE 2016/PREFEITURA DE SÃO PAULO-SP)

Na cidade de São Paulo, se for constatada reforma irregular em imóvel avaliado em P reais, o proprietário será multado em valor igual a k% de P × t, expresso em reais, em que t é o tempo, em meses, decorrido desde a constatação da irregularidade até a reparação dessa irregularidade. A constante k é válida para todas as reformas irregulares de imóveis da capital paulista e é determinada por autoridade competente.

Se, de acordo com as informações do texto , for aplicada multa de R\$ 900,00 em razão de reforma irregular em imóvel localizado na capital paulista e avaliado em R\$ 150.000,00, cuja irregularidade foi reparada em um mês, então a multa a ser aplicada em razão de reforma irregular em imóvel localizado na capital paulista e avaliado em R\$ 180.000,00, cuja irregularidade também foi reparada em um mês, será de


- A) R\$ 1.080,00.
- B) R\$ 1.350,00.
- C) R\$ 1.500,00.
- D) R\$ 1.620,00.
- E) R\$ 1.800,00.

Resolução

A multa é calculada por k% de P × t, o que indica que quanto mais valioso for o imóvel, maior será a multa e quanto maior for o tempo, maior será a multa.

Vamos montar a tabela da regra de três.

Multa	Valor do imóvel (em R\$ 1.000)
900	150
Х	180

$$\frac{900}{x} = \frac{150}{180}$$
$$\frac{900}{x} = \frac{15}{18}$$
$$15 \cdot x = 18 \cdot 900$$
$$x = 1.080$$

Gabarito: A

(CESPE 2016/CPRM)

Três caminhões de lixo que trabalham durante doze horas com a mesma produtividade recolhem o lixo de determinada cidade. Nesse caso, cinco desses caminhões, todos com a mesma produtividade, recolherão o lixo dessa cidade trabalhando durante

- A) 6 horas.
- B) 7 horas e 12 minutos.
- C) 7 horas e 20 minutos.
- D) 8 horas.
- E) 4 horas e 48 minutos.

Resolução

Vamos montar a tabelinha.

Caminhões	Horas
3	12
5	X

A quantidade de caminhões aumentou. Assim, a quantidade de horas que eles levarão para recolher o lixo diminuirá. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

Caminhões	Horas
-----------	-------

Agora é só montar a proporção.

$$\frac{12}{x} = \frac{5}{3}$$

$$5 \cdot x = 3 \cdot 12$$

$$x = \frac{36 \text{ horas}}{5} = 7,2 \text{ horas} = 7h + 0,2h = 7h + 0,2 \cdot 60min$$

$$x = 7h \ 12min$$

Gabarito: B

(CESPE 2016/CPRM)

Por 10 torneiras, todas de um mesmo tipo e com igual vazão, fluem 600 L de água em 40 minutos. Assim, por 12 dessas torneiras, todas do mesmo tipo e com a mesma vazão, em 50 minutos fluirão

- A) 625 L de água.
- B) 576 L de água.
- C) 400 L de água.
- D) 900 L de água.
- E) 750 L de água.

Resolução

Vamos montar a tabela com os dados.

Torneiras	Litros	Minutos
10	600	40
12	×	50

A quantidade de torneiras aumentou. Assim, a quantidade de litros de água também aumentará. As grandezas são diretamente proporcionais.

O tempo aumento e, consequentemente, aumentará a quantidade de litros. As grandezas são diretamente proporcionais.

Torneiras	Litros	Minutos
10	600	40
12	×	50

Vamos montar a proporção.

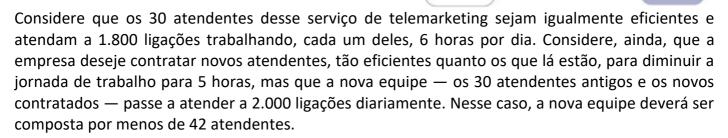
$$\frac{600}{x} = \frac{10}{12} \cdot \frac{40}{50}$$

$$\frac{600}{x} = \frac{400}{600}$$

$$\frac{600}{x} = \frac{4}{6}$$

$$4 \cdot x = 600 \cdot 6$$

$$x = 900$$


Gabarito: D

(CESPE 2015 / TELEBRAS)

A equipe de atendentes de um serviço de telemarketing é constituída por 30 empregados, divididos em 3 grupos, que trabalham de acordo com a seguinte escala.

- Grupo I: 7 homens e 3 mulheres, que trabalham das 6 h às 12 h.
- Grupo II: 4 homens e 6 mulheres, que trabalham das 9 h às 15 h.
- Grupo III: 1 homem e 9 mulheres, que trabalham das 12 h às 18 h.

A respeito dessa equipe, julgue os itens que se seguem

Resolução

Eis a nossa tabelinha.

Atendentes	Ligações	Horas por dia
30	1.800	6
x	2.000	5

A quantidade de ligações aumentou e, assim, precisamos aumentar a quantidade de atendentes. As grandezas são diretamente proporcionais.

A jornada de trabalho diminuiu e, portanto, precisamos aumentar a quantidade de atendentes. Como uma grandeza diminui enquanto a outra aumenta, as grandezas são inversamente proporcionais.

Atendentes	Ligações	Horas por dia
30	1.800	6
×	2.000	5

$$\frac{30}{x} = \frac{1.800}{2.000} \cdot \frac{5}{6}$$

$$\frac{30}{x} = \frac{9.000}{12.000}$$

$$\frac{30}{x} = \frac{9}{12}$$

$$9x = 30 \cdot 12$$

$$x = 40$$

Gabarito: CERTO

Recentemente, a empresa Fast Brick Robotics mostrou ao mundo um robô, conhecido como Hadrian 105, capaz de construir casas em tempo recorde. Ele consegue trabalhar algo em torno de 20 vezes mais rápido que um ser humano, sendo capaz de construir até 150 casas por ano, segundo informações da empresa que o fabrica.

Internet: <www.fastbrickrobotics.net> (com adaptações).

Tendo como referência as informações acima, julgue os itens a seguir.

Se um único robô constrói uma casa de $100~{\rm m}^2$ em dois dias, então 4 robôs serão capazes de construir 6 casas de $75~{\rm m}^2$ em menos de dois dias.

Resolução

Vamos montar a nossa tabelinha.

Na primeira situação, a área construída é de 100 metros quadrados. Na segunda situação, a área construída é 6 x 75 = 450 metros quadrados.

Robôs	Área das casas (m²)	Dias
1	100	2
4	450	x

A quantidade de robôs aumentou e, consequentemente, o tempo em dias para realizar o serviço diminuirá. As grandezas são inversamente proporcionais.

A área construída aumentou e, portanto, precisamos aumentar a quantidade de dias. As grandezas são diretamente proporcionais.

Robôs	Área das casas (m²)	Dias
1	100	2
4	450	x

$$\frac{2}{x} = \frac{4}{1} \cdot \frac{100}{450}$$

$$\frac{2}{x} = \frac{400}{450}$$

$$400 \cdot x = 2 \cdot 450$$

$$x = \frac{900}{400} = 2,25 \ dias$$

Gabarito: ERRADO

Suponha que o tribunal de contas de determinado estado disponha de 30 dias para analisar as contas de 800 contratos firmados pela administração. Considerando que essa análise é necessária para que a administração pública possa programar o orçamento do próximo ano e que o resultado da análise deve ser a aprovação ou rejeição das contas, julgue os itens a seguir.

Suponha que tenham sido designados 10 analistas do tribunal para analisar todos os contratos. Se cada analista levar 5 dias para analisar um contrato, os 800 contratos serão analisados em 30 dias.

Resolução

Sabemos que 1 analista leva 5 dias para analisar 1 contrato. Queremos saber o tempo que 10 analistas levam para analisar 800 contratos.

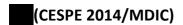
Analista	Dias	Contratos
1	5	1
10	Х	800

Como a quantidade de analistas aumentou, eles levarão menos dias para concluir o serviço. As grandezas são inversamente proporcionais (porque uma aumenta enquanto a outra diminui).

Como a quantidade de contratos aumentou, eles precisarão de mais dias para concluir o serviço. As grandezas são diretamente proporcionais (porque as duas aumentam).

Analista	Dias	Contratos
1	5	1
10	x 🗸	800

$$\frac{5}{x} = \frac{10}{1} \cdot \frac{1}{800}$$


$$\frac{5}{x} = \frac{10}{800}$$

$$10x = 5 \cdot 800$$

$$x = 400 dias$$

Eles levariam 400 dias para analisar os 800 contratos.

Gabarito: Errado

Se 8 alfaiates que trabalham em um mesmo ritmo confeccionarem 36 blusas em 9 horas de trabalho, então 10 alfaiates, com a mesma produtividade dos outros 8, confeccionarão, em 8 horas de trabalho, mais de 45 blusas.

Resolução

Vamos construir a tabela.

Alfaiates	Blusas	Horas
8	36	9
10	Х	8

Como há mais alfaiates, eles farão mais blusas. As grandezas são diretamente proporcionais porque as duas grandezas aumentam.

Como o tempo diminuiu, eles vão produzir menos blusas. As grandezas são diretamente proporcionais porque as duas diminuem.

Alfaiates	Blusas	Horas
8	36	9
10	x	8

$$\frac{36}{x} = \frac{8}{10} \cdot \frac{9}{8}$$

$$9x = 360$$

$$x = 40$$

Gabarito: Errado

A poluição dos carros paulistanos

São Paulo começou neste ano a fazer a inspeção ambiental dos veículos registrados na cidade. Os movidos a dísel são os primeiros.

Veja os números dos veículos na capital paulista:

- veículos registrados: 6,1 milhões;
- está fora de circulação ou trafega irregularmente: 1,5 milhão;
- movidos a dísel: 800.000;
- cumprem os limites de emissão de poluentes: 20% dos veículos inspecionados.

Idem, p. 63 (com adaptações).

Tendo o texto acima como referência, julgue o item seguinte.

Considere que 18 agentes do departamento de trânsito da cidade de São Paulo conseguem fazer a inspeção ambiental de 360 veículos em 5 horas de trabalho. Considere também que todos os agentes trabalham com a mesma eficiência e que o tempo gasto para inspecionar cada veículo é o mesmo para qualquer tipo de veículo. Nessa situação, para inspecionar todos os veículos movidos a dísel em 400 horas de trabalho serão necessários mais de 450 agentes.

Resolução

O texto nos informou que são 800.000 veículos movidos a dísel.

Agentes	Veículos inspecionados	Horas de trabalho
18	360	5
X	800.000	400

Vamos simplificar as colunas. A segunda coluna é simplificável por 40 e a terceira coluna é simplificável por 5.

Agentes	Veículos inspecionados	Horas de trabalho
18 📗	9	1
x	20.000	80

Aumentando a quantidade de veículos inspecionados, aumenta-se a quantidade de agentes (as grandezas são diretamente proporcionais).

Aumentando-se a quantidade de horas trabalhadas, diminui-se a quantidade de agentes (as grandezas são inversamente proporcionais).

Agentes	Veículos inspecionados	Horas de trabalho
18 📗	9 📗	1
x	20.000	80

$$\frac{18}{x} = \frac{9}{20.000} \cdot \frac{80}{1}$$

$$\frac{18}{x} = \frac{720}{20.000}$$

$$720x = 360.000$$

$$x = 500 agentes$$

Gabarito: Certo

(CESPE 2008/Ministério do Esporte)

Para implantar um novo plano de saúde em uma empresa, uma equipe foi incumbida de fazer o cadastro dos empregados que desejam aderir ao plano. Sabendo que 12 elementos dessa equipe conseguem cadastrar 1.296 empregados em 9 horas de trabalho e que a equipe trabalha de forma homogênea, julgue os itens a seguir.

Para cadastrar 468 empregados, 6 elementos da equipe levariam 6 h e 30 min.

Resolução

Elementos da equipe	Empregados cadastrados	Horas
12	1.296	9
6	468	x

Preparada a tabela da regra de três, podemos simplificar os números para facilitar os cálculos. A primeira coluna pode ser simplificada por 6, ou seja, divide-se 12 por 6 e divide-se 6 por 6. A segunda coluna pode ser simplificada por 36. 1.296 dividido por 36 é igual a 36 e 468 dividido por 36 é igual a 13.

Se você não tivesse percebido que 1.296 e 468 podem ser simplificados por 36, então faça várias simplificações: por 2, por 3 e por 3. O que importa é facilitar os cálculos...

A tabela ficará assim:

Elementos da equipe	Empregados cadastrados	Horas
2	36	9
1	13	x

Diminuindo a quantidade de elementos da equipe que realizarão o cadastro, a quantidade de horas para realizar o trabalho aumentará. As grandezas são inversamente proporcionais. Portanto, a primeira coluna será invertida.

Diminuindo a quantidade de empregados a serem cadastrados, o trabalho diminui e, consequentemente a quantidade de horas para realizar o trabalho também diminui. As grandezas são diretamente proporcionais. A segunda coluna será mantida.

Elementos da equipe	Empregados cadastrados	Horas
2	36	9
1	13	x

$$\frac{9}{x} = \frac{1}{2} \cdot \frac{36}{13}$$

$$\frac{9}{x} = \frac{36}{26}$$

$$36 \cdot x = 9 \cdot 26$$

$$36x = 234 \Rightarrow x = 6.5 \text{ horas} = 6 \text{ horas } e 30 \text{ minutos}$$

Gabarito: Certo

Dez elementos da equipe, em 1 h, 10 min e 30 s, conseguem cadastrar 141 empregados.

Vamos colocar como incógnita o tempo. Vamos calcular em quanto tempo 10 elementos da equipe conseguem cadastrar 141 empregados.

Elementos da equipe	Empregados cadastrados	Horas
12	1.296	9
10	141	x

Vamos simplificar a primeira coluna por 2 e a segunda coluna por 3.

Elementos da equipe	Empregados cadastrados	Horas
6	432	9
5	47	x

Diminuindo a quantidade de elementos da equipe que realizarão o cadastro, a quantidade de horas para realizar o trabalho aumentará. As grandezas são inversamente proporcionais. Portanto, a primeira coluna será invertida.

Diminuindo a quantidade de empregados a serem cadastrados, o trabalho diminui e, consequentemente a quantidade de horas para realizar o trabalho também diminui. As grandezas são diretamente proporcionais. A segunda coluna será mantida.

Elementos da equipe	Empregados cadastrados	Horas
6	432	9
5	47	x

$$\frac{9}{x} = \frac{5}{6} \cdot \frac{432}{47}$$

432 dividido por 6 é igual a 72.

$$\frac{9}{x} = \frac{5}{1} \cdot \frac{72}{47}$$

$$\frac{9}{x} = \frac{360}{47}$$

$$360 \cdot x = 9 \cdot 47$$

$$x = \frac{9 \cdot 47}{360} = \frac{47}{40} \ horas = 1,175 \ horas = 1 \ hora + 0,175 \cdot 60 \ minutos$$

x = 1 hora e 10,5 minutos = 1 hora 10 minutos e 30 segundos

Gabarito: Certo

Em 5 min, 2 empregados são cadastrados por um elemento da equipe.

Elementos da equipe	Empregados cadastrados	Horas
12	1.296	9
1	2	x

A segunda coluna pode ser simplificada por 2.

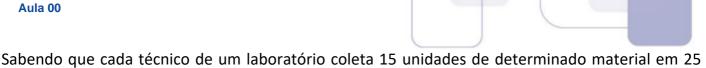
Elementos da equipe	Empregados cadastrados	Horas
12	648	9
1	1	x

Diminuindo a quantidade de elementos da equipe que realizarão o cadastro, a quantidade de horas para realizar o trabalho aumentará. As grandezas são inversamente proporcionais. Portanto, a primeira coluna será invertida.

Diminuindo a quantidade de empregados a serem cadastrados, o trabalho diminui e, consequentemente a quantidade de horas para realizar o trabalho também diminui. As grandezas são diretamente proporcionais. A segunda coluna será mantida.

Elementos da equipe	Empregados cadastrados	Horas
12	648	9
1	1	x

$$\frac{9}{x} = \frac{1}{12} \cdot \frac{648}{1}$$


$$\frac{9}{x} = 54$$

$$54 \cdot x = 9$$

$$x = \frac{9}{54} = \frac{1}{6} de hora = \frac{1}{6} \cdot 60 minutos = 10 minutos$$

Gabarito: Errado

(CESPE 2009/UNIPAMPA)

Sabendo que cada técnico de um laboratório coleta 15 unidades de determinado material em 25 minutos, julgue o item seguinte.

Para se coletar 15 unidades do material em 4 minutos e 10 segundos, serão necessários menos de 8 técnicos.

Resolução

Técnicos	Unidades de material	Minutos
1	15	25
x	15	4 minutos e 10 segundos

A quantidade de unidades de material é igual nas duas situações. Podemos então tirá-la da regra de três. Temos ainda um problema nas unidades de tempo. Vamos transformar todos os valores para segundos.

 $25 \text{ minutos} = 25 \cdot 60 \text{ segundos} = 1.500 \text{ segundos}$

 $4 \text{ minutos e } 10 \text{ segundos} = 4 \cdot 60 + 10 = 250 \text{ segundos}$

Técnicos	Segundos
1	1.500
x	250

Diminuindo o tempo para a execução do serviço, devemos aumentar a quantidade de técnicos. As grandezas são inversamente proporcionais. Assim, devemos inverter a segunda coluna.

Técnicos	Segundos 🔨
1 💭	1.500
x	250

$$\frac{1}{x} = \frac{250}{1.500}$$

$$250x = 1.500$$

$$x = \frac{1.500}{250} = 6 \text{ técnicos}$$

Gabarito: Certo

(CESPE 2008/SEBRAE-BA)

Uma equipe de apoio administrativo foi encarregada de fazer o levantamento de dados visando à organização dos arquivos da empresa. Sabendo-se que 2 membros da equipe fazem o levantamento de 9% dos dados necessários em 5 horas de trabalho e que todos os membros da equipe trabalham no mesmo ritmo, julgue os itens seguintes.

Em 6 horas e 40 minutos de trabalho, 5 membros da equipe fazem o levantamento de 30% dos dados necessários.

Resolução

Sabendo-se que 2 membros da equipe fazem o levantamento de 9% dos dados necessários em 5 horas de trabalho.

Para facilitar os cálculos vamos calcular o tempo em minutos. 5 horas de trabalho equivalem a $5 \times 60 = 300 \ minutos$ de trabalho.

Em 6 horas e 40 minutos de trabalho, 5 membros da equipe fazem o levantamento de 30% dos dados necessários.

6 horas e 40 minutos de trabalho equivalem a $6 \times 60 + 40 = 400 \ minutos$ de trabalho.

Membros da equipe	Serviço	Tempo (min)
2	9%	300
5	x	400

Podemos simplificar a última coluna por 100.

Membros da equipe	Serviço	Tempo (min)
2	9%	3
5	\boldsymbol{x}	4

Aumentando a quantidade de membros da equipe, a porcentagem do levantamento dos dados necessários aumentará. As grandezas são diretamente proporcionais.

Aumentando o tempo de serviço, a porcentagem do levantamento dos dados necessários aumentará. As grandezas são diretamente proporcionais.

Membros da equipe	Serviço	Tempo (min)
2	9%	3
5	x	4

$$\frac{9\%}{x} = \frac{2}{5} \cdot \frac{3}{4}$$

$$\frac{9\%}{x} = \frac{6}{20}$$

$$6 \cdot x = 20 \cdot 9\%$$

$$6x = 180\%$$

$$x = 30\%$$

Gabarito: Certo

Oito membros da equipe, para realizarem o levantamento de 72% dos dados necessários, gastarão mais de 12 horas de trabalho.

Resolução

Sabemos que 2 membros da equipe fazem o levantamento de 9% dos dados necessários em 5 horas de trabalho.

Membros da equipe	Serviço	Tempo (h)
2	9%	5
8	72%	X

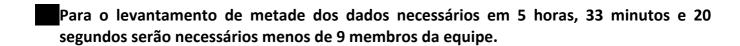
Podemos simplificar a primeira coluna por 2. Na segunda coluna, podemos apagar o símbolo de percentagem (%) e, em seguida, simplificar por 9.

Membros da equipe	Serviço	Tempo (h)
1	1	5
4	8	x

Aumentando a quantidade de membros da equipe, o tempo necessário para realizar determinado serviço diminui. As grandezas são inversamente proporcionais.

Aumentando o serviço, o tempo necessário para a sua realização aumentará. As grandezas são diretamente proporcionais.

Membros da equipe	Serviço	Tempo (h)
1	1	5
4	8	x


$$\frac{5}{x} = \frac{4}{1} \cdot \frac{1}{8}$$

$$\frac{5}{x} = \frac{4}{8}$$

$$4 \cdot x = 5 \cdot 8$$

$$4x = 40 \Leftrightarrow x = 10 horas$$

Gabarito: Errado

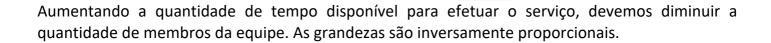
Resolução

Para facilitar os cálculos, vamos utilizar os tempos expressos em segundos.

2 membros da equipe fazem o levantamento de 9% dos dados necessários em 5 horas de trabalho.

$$5 horas = 5 \cdot 60 min = 300 min = 300 \cdot 60s = 18.000 s$$

$$5 h 33 \min 20 s = 5 \times 60 \min +33 \min +20 s = 333 \min +20 s = 333 \cdot 60 + 20 = 20.000 s$$


Membros da equipe	Serviço	Tempo (s)
2	9%	18.000
X	50%	20.000

A terceira coluna pode ser simplificada por 1.000. Obtemos 18 e 20. Podemos simplificar 18 e 20 por 2.

Podemos apagar o símbolo de percentagem (%) na segunda coluna.

Membros da equipe	Serviço	Tempo (s)
2	9	9
х	50	10

Aumentando a quantidade de serviço a ser feito, devemos aumentar a quantidade de membros da equipe. As grandezas são diretamente proporcionais.

Membros da equipe	Serviço	Tempo (s)
2	9	9
x	50	10

$$\frac{2}{x} = \frac{9}{50} \cdot \frac{10}{9}$$

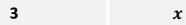
Podemos cortar os 9's e simplificar o 10 e o 50 por 10.

$$\frac{2}{x} = \frac{1}{5} \cdot \frac{1}{1}$$

$$\frac{2}{x} = \frac{1}{5}$$

$$x = 10 membros$$

Gabarito: Errado


(CESPE 2008/SEBRAE-BA)

Uma equipe de empregados do setor apoio administrativo de uma empresa foi designada para treinar um grupo de empregados recém-contratados. Sabe-se que todos os elementos da equipe treinadora são igualmente eficientes e se um único elemento dessa equipe fosse treinar todos os empregados novatos, gastaria 16 horas para fazê-lo. Nesse caso,

três elementos da equipe treinadora gastariam 5 horas e 20 minutos para treinar todos os novos empregados.

Resolução

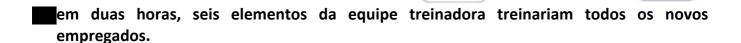
Elementos da equipe	Horas
1	16

Aumentando o número de elementos na equipe, então o tempo para treinar todos os novos empregados diminui. As grandezas são inversamente proporcionais.

Elementos da equipe	Horas
1	16
3	x

$$\frac{16}{x} = \frac{3}{1}$$

$$3x = 16$$


$$x = \frac{16}{3}horas$$

Vamos dividir 16 horas por 3. 16 horas dividido por 3 é igual a 5 horas e resto igual a 1 hora. Este resto de 1 hora é igual a 60 minutos. 60 minutos dividido por 3 é igual a 20 minutos.

$$\begin{array}{ccc} 60 \ \textit{minutos} \ \underline{/ \ \ 3} \\ 0 & \hline \ \ 20 \ \textit{minutos} \end{array}$$

x = 5 horas e 20 minutos

Gabarito: Certo

Resolução

Elementos da equipe	Horas
1	16
\boldsymbol{x}	2

Diminuindo o tempo para treinar os novos empregados, devemos aumentar o número de elementos da equipe. As grandezas são inversamente proporcionais.

Elementos da equipe	Horas
1	16
\boldsymbol{x}	2

$$\frac{1}{x} = \frac{2}{16}$$

$$2x = 16$$

$$x = 8$$

Precisamos de 8 elementos da equipe.

Gabarito: Errado

(CESPE 2009/MEC)

Considerando que uma equipe de trabalhadores igualmente eficientes seja formada para proceder à codificação de documentos, e que cada elemento dessa equipe consiga codificar 10% dos documentos em 3 h, julgue os itens que se seguem.

Para codificar metade dos documentos, 6 elementos da equipe gastarão mais de 2 h.

Resolução

Elementos da equipe	Porcentagem do Trabalho (%)	Horas
1	10	3
6	50	x

Como estamos trabalhando com porcentagem, metade dos documentos significa 50%. Podemos simplificar a segunda coluna por 10.

Elementos da equipe	Porcentagem do Trabalho (%)	Horas
1	1	3
6	5	x

Aumentando o número de elementos da equipe de trabalhadores, diminui o tempo necessário para a realização do serviço. As grandezas são inversamente proporcionais e devemos inverter a primeira coluna.

Aumentando a porcentagem de trabalho, devemos aumentar a quantidade de horas para a realização do serviço. As grandezas são diretamente proporcionais.

Elementos da equipe	Porcentagem do Trabalho (%)	Horas
1	1	3
6	5	x

$$\frac{3}{x} = \frac{6}{1} \cdot \frac{1}{5}$$

$$\frac{3}{x} = \frac{6}{5}$$

$$6 \cdot x = 3 \cdot 5$$

$$6x = 15$$

$$x = 2.5 horas$$

Gabarito: Certo

Em uma hora e meia, 4 elementos da equipe codificarão menos de 18% dos documentos.

Resolução

Elementos da equipe	Porcentagem do Trabalho (%)	Horas
1	10	3
4	x	1,5

Aumentando o número de elementos da equipe, aumenta-se a porcentagem do trabalho realizado. As grandezas são diretamente proporcionais.

Diminuindo o tempo de serviço, diminui a porcentagem do trabalho realizado. As grandezas são diretamente proporcionais.

Observe que podemos simplificar a terceira coluna por 1,5. Temos que 3 dividido por 1,5 é igual a 2 e 1,5 dividido por 1,5 é igual a 1.

Elementos da equipe	Porcentagem do Trabalho (%)	Horas
1	10	2
4	x	1

$$\frac{10}{x} = \frac{1}{4} \cdot \frac{2}{1}$$

$$\frac{10}{x} = \frac{2}{4}$$

$$2x = 40$$

$$x = 20$$

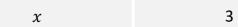
São realizados 20% do trabalho.

Gabarito: Errado

(CESPE 2010/SEDU-ES)

Considere que, para a reforma das salas de aula de uma escola, sejam necessários 18 operários trabalhando 8 horas por dia durante 20 dias úteis. Com base nessa situação hipotética e considerando as possíveis reduções no prazo dessa reforma, julgue os itens a seguir.

Para a conclusão das obras em 15 dias úteis, mantendo-se o regime de trabalho de 8 horas diárias, a quantidade adicional de operários que deve ser contratada é inferior a 7.


Resolução

Operários	Horas por dia	Dias úteis
18	8	20
x	8	15

Já que o regime de trabalho é constante, podemos apagar a segunda coluna.

Podemos simplificar a terceira coluna por 5.

Operários	Dias úteis
18	4

Diminuindo a quantidade de dias úteis, ou seja, diminuindo o prazo, devemos aumentar a quantidade de operários. As grandezas são inversamente proporcionais. Devemos inverter a segunda coluna.

Operários	Dias úteis
18	4
x	3

$$\frac{18}{x} = \frac{3}{4}$$

$$3 \cdot x = 4 \cdot 18$$

$$3x = 72$$

$$x = 24$$

Como já temos 18 operários, precisamos contratar 24 - 18 = 6 operários.

Gabarito: Certo

Considerando que não haja possibilidade de novas contratações e que a reforma deva ser concluída em 16 dias úteis, então, nesse caso, cada operário deverá trabalhar 1 hora extra por dia.

Resolução

Operários	Horas por dia	Dias úteis
18	8	20

 \boldsymbol{x}

16

18

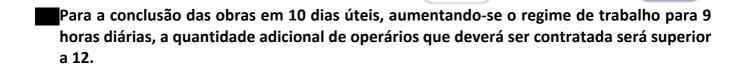
Como a quantidade de operários é constante, podemos apagar a primeira coluna. Os números da terceira coluna podem ser simplificados por 4.

Horas por dia	Dias úteis
8	5
x	4

Diminuindo o prazo, devemos aumentar a quantidade de horas trabalhadas por dia. As grandezas são inversamente proporcionais.

Horas por dia	Dias úteis
8	5
\boldsymbol{x}	4

$$\frac{8}{x} = \frac{4}{5}$$


$$4 \cdot x = 5 \cdot 8$$

$$4x = 40$$

$$x = 10$$

Como a jornada diária era de 8 horas, cada operário deverá trabalhar 2 horas extras diárias.

Gabarito: Errado

Operários	Horas por dia	Dias úteis
18	8	20
x	9	10

Vamos simplificar a última coluna por 10.

Operários	Horas por dia	Dias úteis
18	8	2
x	9	1

Aumentando a carga horária diária, podemos diminuir a quantidade de operários. As grandezas são inversamente proporcionais.

Diminuindo o prazo (dias úteis), devemos aumentar a quantidade de operários. As grandezas são inversamente proporcionais.

Operários	Horas por dia	Dias úteis
18	8	2
x	9	1

$$\frac{18}{x} = \frac{9}{8} \cdot \frac{1}{2}$$

$$\frac{18}{x} = \frac{9}{16}$$

$$9x = 16 \cdot 18$$

$$x = \frac{16 \cdot 18}{9} = 32$$

Como já tínhamos 18 funcionários, precisamos contratar 32 - 18 = 14 novos operários.

Gabarito: Certo

(CESPE 2009/Pref. de Ipojuca)

Se 3 operários conseguem fabricar, com a ajuda de uma máquina, 84 pares de sapatos em 7 horas de trabalho e, em certo dia, eles trabalharem nas mesmas condições por apenas 3 horas, então, nesse dia, eles fabricarão 36 pares de sapatos.

Resolução

Como a quantidade de operários e a quantidade de máquinas é constante, então não precisamos colocar estas grandezas na regra de três.

Pares de sapatos	Horas de trabalho
84	7
х	3

Diminuindo a quantidade de horas de trabalho, a quantidade de pares de sapatos produzidos diminuirá. As grandezas são diretamente proporcionais.

Pares de sapatos	Horas de trabalho
84	7
х	3

$$\frac{84}{x} = \frac{7}{3}$$

x = 36 pares de sapatos.

Gabarito: Certo

(CESPE 2007/MPE-AM)

Considere que todos os técnicos de uma empresa trabalhem com a mesma eficiência, isto é, a quantidade de trabalho que cada um realiza é a mesma para todos, em um mesmo período de tempo. Nesse caso, se 3 técnicos fazem a manutenção de 36 aparelhos de ar condicionado em 12 dias, então

3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 1 dia.

1 técnico faz a manutenção de 1 aparelho de ar condicionado em 1 dia.

3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 3 dias.

6 técnicos fazem a manutenção de 6 aparelhos de ar condicionado em 1 dia.

Resolução

A tabela base da regra de três será a seguinte.

Técnicos	Aparelhos de ar	Dias
3	36	12

Vamos analisar cada um dos itens de per si.

Item I. 3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 1 dia.

Técnicos	Aparelhos de ar	Dias
3	36	12
3	3	Х

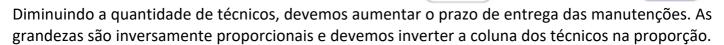
Como a quantidade de técnicos é constante, podemos eliminar a coluna dos técnicos da tabela.

Aparelhos de ar	Dias
36	12
3	х

Diminuindo a quantidade de aparelhos de ar condicionado, diminui também a quantidade de dias necessários para a manutenção. As grandezas são diretamente proporcionais.

Aparelhos de ar	Dias
36	12
3	x

$$\frac{36}{3} = \frac{12}{x}$$


$$36x = 36$$

$$x = 1 dia$$

Gabarito: Certo

Item II. 1 técnico faz a manutenção de 1 aparelho de ar condicionado em 1 dia.

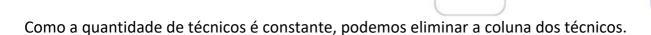
Técnicos	Aparelhos de ar	Dias
3	36	12
1	1	x

Diminuindo a quantidade de aparelhos de ar, devemos diminuir o prazo de entrega das manutenções. As grandezas são diretamente proporcionais.

Técnicos 🛖	Aparelhos de ar	Dias
3	36	12
1	1	Х

$$\frac{12}{x} = \frac{1}{3} \cdot \frac{36}{1}$$

$$\frac{12}{x} = \frac{36}{3}$$


$$\frac{12}{x} = \frac{12}{1}$$

$$x = 1$$

Gabarito: Certo

Item III. 3 técnicos fazem a manutenção de 3 aparelhos de ar condicionado em 3 dias.

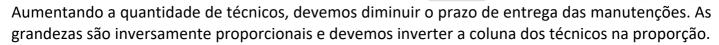
Técnicos	Aparelhos de ar	Dias
3	36	12
3	3	X

Aparelhos de ar	Dias
36	12
3	x

Diminuindo a quantidade de aparelhos de ar condicionado, diminui também a quantidade de dias necessários para a manutenção. As grandezas são diretamente proporcionais.

Aparelhos de ar	Dias
36	12 📗
3	x

$$\frac{36}{3} = \frac{12}{x}$$


$$36x = 36$$

$$x = 1 dia$$

Gabarito: Errado

Item IV. 6 técnicos fazem a manutenção de 6 aparelhos de ar condicionado em 1 dia.

Técnicos	Aparelhos de ar	Dias
3	36	12
6	6	X

Diminuindo a quantidade de aparelhos de ar, devemos diminuir o prazo de entrega das manutenções. As grandezas são diretamente proporcionais.

Técnicos 🔷	Aparelhos de ar	Dias
3	36	12
6	6	x

$$\frac{12}{x} = \frac{6}{3} \cdot \frac{36}{6}$$

$$\frac{12}{x} = 12$$

$$x = 1 dia$$

Gabarito: Certo

(CESPE 2007/MPE-AM)

O número de passageiros que um barco pode transportar é calculado com base no fato de que o peso de 40 adultos equivale ao de 48 crianças. Com relação a essa situação, julgue os itens seguintes.

Em um barco que tem capacidade de transportar 60 passageiros adultos, podem ser transportadas mais de 74 crianças.

Resolução

Crianças	Adultos
48	40
x	60

Se o barco tem capacidade para transportar mais adultos, terá capacidade para transportar mais crianças. As grandezas são diretamente proporcionais.

$$\frac{48}{x} = \frac{40}{60}$$

$$\frac{48}{x} = \frac{2}{3}$$

$$2x = 144$$

$$x = 72$$
 crianças

Gabarito: Errado

Em um barco que tem capacidade para transportar 60 passageiros adultos, podem ser transportados 50 adultos e 12 crianças.

Resolução

O barco tem capacidade para transportar 60 adultos e já estão presentes 50 adultos. Podemos completar o barco com 10 adultos. Esses 10 adultos podem ser substituídos por quantas crianças?

Crianças	Adultos
48	40
x	10

Diminuindo a quantidade de adultos devemos diminuir a quantidade de crianças. As grandezas são diretamente proporcionais.

$$\frac{48}{x} = \frac{40}{10}$$

$$40x = 480$$

$$x = 12$$
 crianças.

Gabarito: Certo

(VUNESP 2018/CM de Dois Córregos)

Para realizar determinado projeto, um profissional leva 10 dias, trabalhando 6 horas por dia. Se esse profissional mantiver o mesmo ritmo diário de trabalho, o número de horas diárias que ele terá que trabalhar para realizar esse projeto em 8 dias será

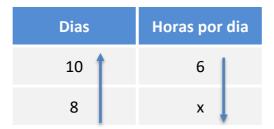
- a) 8,5.
- b) 8,0.
- c) 7,5.
- d) 7,0.
- e) 6,5.

Resolução

Se o profissional trabalha 6 horas por dia durante 10 dias, então ele leva:

$$6 \times 10 = 60$$
 horas para concluir o projeto

Queremos saber quantas horas diárias ele precisa trabalhar para concluir o projeto em 8 dias. Basta dividir as 60 horas por 8.


$$\frac{60 \ horas}{8 \ dias} = 7,5 \ horas$$

Vamos resolver usando a regra de três apenas para treinar.

Dias	Horas por dia
10	6
8	x

A quantidade de dias diminuiu. Para que o trabalho seja concluído, o profissional precisará trabalhar mais horas por dia.

Como uma grandeza diminuiu enquanto a outra aumentou, elas são inversamente proporcionais.

Agora vamos montar a proporção respeitando os sentidos das setas.

$$\frac{6}{x} = \frac{8}{10}$$

$$8x = 60$$

$$x = 7.5$$
 horas por dia

Gabarito: C

(VUNESP 2018/CM de Indaiatuba)

É sabido que 5 operários transportaram 4 m³ de areia em exatas duas horas de trabalho. A quantidade de areia, em m³, que outros 13 operários, cada um com a mesma capacidade de cada um dos 5 operários anteriores, transportarão a mais que os operários anteriores, no mesmo tempo de serviço, é igual a

- a) 8,2.
- b) 7,1.
- c) 6,4.
- d) 5,8.
- e) 5,3.

Resolução

Vamos montar a tabela. O tempo é irrelevante, pois é o mesmo nas duas situações.

Operários	m^3
5	4
13	x

A quantidade de operários aumentou. Portanto, a quantidade de areia transportada também aumentará.

Como as duas grandezas aumentam, elas são diretamente proporcionais.

Operários	m^3
5	4
13	x

$$\frac{4}{x} = \frac{5}{13}$$

$$5x = 52$$

$$x = 10.4$$

O segundo grupo transportará 10,4 m^3 . Eles transportarão a mais que o primeiro grupo:

$$10,4-4=6,4 m^3$$

Gabarito: C

(VUNESP 2018/IPSM São José dos Campos)

Considere que os professores gastam sempre o mesmo tempo para corrigir cada redação. Sabe-se que 12 professores corrigiram 1.575 redações em 7 horas e 30 minutos. Para corrigir 1.120 redações, 15 professores gastarão o tempo de

- a) 3 horas e 28 minutos.
- b) 3 horas e 42 minutos.
- c) 4 horas e 16 minutos.
- d) 4 horas e 34 minutos.
- e) 5 horas e 4 minutos.

Resolução

Vamos montar a tabelinha da regra de três. Como as alternativas contém números "quebrados", vamos transformar o tempo para minutos.

$$7h30min = (7 \times 60 + 30)min = 450 min$$

Professores	Redações	Minutos
12	1.575	450
15	1.120	X

Vamos simplificar as colunas.

A primeira coluna pode ser simplificada por 3. A segunda coluna pode ser simplificada por 5.

Professores	Redações	Minutos
4	315	450
5	224	x

Vamos agora comparar as grandezas conhecidas (professores, redações) com a grandeza desconhecida (minutos).

A quantidade de professores aumentou. Como há mais professores fazendo a correção, o tempo irá diminuir (supondo que o número de redações fosse constante). Como uma grandeza aumentou e a outra diminuiu, então elas são inversamente proporcionais. Seta invertida para cima.


Professor	es	Redações	Minutos
4		315	450
5		224	х

A quantidade de redações diminuiu. Como há menos redações para corrigir, então o tempo irá diminuir também. Como as duas grandezas diminuíram, então elas são diretamente proporcionais.

Professores	Redações	Minutos
4	315	450
5	224	x

Agora é só armar a proporção.

$$\frac{450}{x} = \frac{5}{4} \times \frac{315}{224}$$

$$\frac{450}{x} = \frac{1.575}{896}$$

$$1.575x = 896 \times 450$$

$$x = \frac{896 \times 450}{1.575}$$

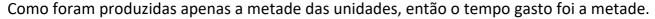
$$x = 256 minutos$$

Como $4 horas = 4 \times 60 min = 240 min$, então:

$$x = 256 \, min = 4h \, 16 \, min$$

Gabarito: C

(VUNESP 2018/IPSM São José dos Campos)


Um total de 30 mil unidades de determinado produto seria produzido por 6 máquinas, todas idênticas, trabalhando ao mesmo tempo, durante 5 horas e 30 minutos, de forma ininterrupta. No exato instante em que se produziu metade das unidades, 2 das máquinas quebraram, e a produção foi automaticamente interrompida em todas as máquinas. Após a retomada do trabalho, o restante das unidades foi produzido pelas 4 máquinas não quebradas, nas mesmas condições iniciais. Dessa forma, contando apenas o tempo em que as máquinas estiveram em funcionamento, a produção toda foi concluída em um período de tempo de, aproximadamente,

- a) 6 horas e 50 minutos.
- b) 6 horas e 35 minutos.
- c) 6 horas e 20 minutos.
- d) 6 horas e 05 minutos.
- e) 5 horas e 50 minutos.

Resolução

As 30 mil unidades seriam produzidas por 6 máquinas durante:

$$5h\ 30min = (5 \times 60 + 30)min = 330min$$

$$\frac{330}{2} = 165 \, minutos$$

Resumindo: 6 máquinas produziram 15 mil unidades (metade) em 165 minutos.

Queremos saber em quanto tempo as 4 máquinas não quebradas vão produzir as unidades restantes (15 mil unidades).

Unidades (em milhares)	Máquinas	Minutos
15	6	165
15	4	х

Como a quantidade de unidades é a mesma, podemos tirar da regra de 3 (pois 15/15 = 1).

Máquinas	Minutos
6	165
4	x

A quantidade de máquinas diminuiu. Portanto, as máquinas levarão mais tempo para concluir o serviço. Como uma grandeza diminuiu enquanto a outra aumentou, elas são inversamente proporcionais.

Máquinas	Minutos
6	165
4	х

$$\frac{165}{x} = \frac{4}{6}$$

$$4x = 6 \times 165$$

$$x = 247,5min$$

$$x = 247 \min 30s$$

O tempo total para produzir todas as máquinas foi:

$$165 \min + 247 \min 30s = 412 \min 30s =$$

$$= 6h 52 min 30s$$

Gabarito: A

(VUNESP 2018/CM de Dois Córregos)

Em uma indústria, 20 máquinas iguais, de mesmo rendimento, produzem juntas 5.000 parafusos iguais, em meia hora de funcionamento simultâneo e ininterrupto. Desse modo, para produzir 1000 unidades dos mesmos parafusos em uma hora, seria necessário o funcionamento, nas mesmas condições operacionais, de apenas

- a) 2 máquinas.
- b) 3 máquinas.
- c) 5 máquinas.
- d) 6 máquinas.
- e) 8 máquinas.

Resolução

Vamos montar a tabela.

Máquinas	Parafusos	Minutos
20	5.000	30
X	1.000	60

Vamos simplificar as colunas.

Máquinas	Parafusos	Minutos
20	5	1
x	1	2

Agora devemos comparar as grandezas conhecidas (parafusos, minutos) com a grandeza desconhecida (máquinas).

A quantidade de parafusos diminuiu. Assim, podemos diminuir a quantidade de máquinas para produzi-los. Como as duas grandezas diminuem, elas são diretamente proporcionais.

Máquina	Máquinas		os	Minutos
20		5		1
x		1 ,		2

O tempo para produzir os parafusos aumentou. Como temos mais tempo disponível, a quantidade de máquinas pode diminuir (para produzir a mesma quantidade de parafusos). Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

Máquina	S	Parafuso	os	Minuto	S
20		5		1 1	
х		1	,	2	

$$\frac{20}{x} = \frac{5}{1} \times \frac{2}{1}$$

$$\frac{20}{x} = 10$$

$$x = 2$$

Gabarito: A

(VUNESP 2018/CM de Indaiatuba)

Em um atelier, 15 artesãos, trabalhando 6 horas por dia, durante 8 dias, pintam 240 caixas de lembranças. Com a mesma capacidade de trabalho que os artesãos anteriores, outros 12 artesãos, trabalhando 10 horas por dia, durante 12 dias, pintarão um total das mesmas caixas de lembranças igual a

- a) 240.
- b) 360.
- c) 480.
- d) 540.
- e) 600.

Resolução

Em um atelier, 15 artesãos, trabalhando 6 horas por dia, durante 8 dias, pintam 240 caixas de lembranças.

Para ter menos trabalho, podemos dizer que os 15 artesãos pintam 240 caixas em $6 \times 8 = 48$ horas de trabalho.

Queremos saber quantas caixas 12 artesãos pintarão em 10 x 12 = 120 horas.

Artesãos	Caixas	Horas
15	240	48
12	х	120

Seria possível também resolver a questão com duas colunas separadas para "horas por dia" e "dias".

Vamos agora simplificar as colunas. A primeira coluna pode ser simplificada por 3 e a última coluna pode ser simplificada por 24.

Artesãos	Caixas	Horas
5	240	2
4	x	5

A quantidade de artesãos diminuiu. Portanto, menos caixas serão pintadas. Como as duas quantidades diminuem, elas são diretamente proporcionais.

O tempo aumentou. Consequentemente, mais caixas serão pintadas. Como as duas grandezas aumentam, então elas são diretamente proporcionais.

Artesãos	Caixas	Horas
5	240	2
4	x	5

Agora é só montar a proporção.

$$\frac{240}{x} = \frac{5}{4} \times \frac{2}{5}$$

$$\frac{240}{x} = \frac{2}{4}$$

$$\frac{240}{x} = \frac{1}{2}$$

$$x \cdot 1 = 2 \cdot 240$$

$$x = 480$$

Gabarito: C

(VUNESP 2018/CM de São José dos Campos)

Uma determinada máquina fabrica 24 unidades de um determinado produto em uma hora e meia de funcionamento ininterrupto. Três máquinas idênticas à anterior, trabalhando juntas, nas mesmas condições de funcionamento, fabricarão 100 unidades desse mesmo produto em

- a) 1 hora e 12 minutos.
- b) 1 hora e 34 minutos.
- c) 1 hora e 50 minutos.
- d) 2 horas e 05 minutos.
- e) 2 horas e 17 minutos.

Resolução

Sabemos que 24 unidades são produzidas em 90 minutos (uma hora e meia) por 1 máquina.

Queremos saber o tempo que 3 máquinas levam para produzir 100 unidades.

Vamos montar a tabela para comparar as grandezas.

Tempo (min)	Unidades	Máquinas
90	24	1
X	100	3

Precisamos produzir mais unidades. Assim, precisaremos de mais tempo para produzi-las. Como as duas grandezas aumentam, elas são diretamente proporcionais.

Temos mais máquinas na produção. Portanto, levaremos menos tempo para executar o serviço. Como uma grandeza aumentou e a outra diminuiu, elas são inversamente proporcionais.

Tempo (min)	Unidades	Máquinas
90	24	1
x	100	3

Agora vamos armar a proporção.

$$\frac{90}{x} = \frac{24}{100} \times \frac{3}{1}$$

$$\frac{90}{x} = \frac{72}{100}$$

$$72x = 9.000$$

$$x = 125 min = 2h 5min$$

Gabarito: D

(VUNESP 2018/PM-SP)

Uma máquina trabalhando ininterruptamente 5 horas por dia produz um lote de peças em 3 dias. Para que esse mesmo lote fique pronto em 2 dias, o tempo que essa máquina terá que trabalhar diariamente, de forma ininterrupta, é de

- a) 7 horas e 05 minutos.
- b) 7 horas e 30 minutos.

- d) 6 horas e 45 minutos.
- e) 6 horas e 35 minutos.

Se a pessoa trabalhar 5 horas diariamente por 3 dias, então ela trabalha $5 \times 3 = 15$ horas no total.

Para trabalhar as 15 horas em 2 dias, a pessoa precisa trabalhar 15/2 = 7,5 horas por dia = 7h 30 min por dia.

Se preferir fazer a tabelinha...

Horas por dia	Dias
5	3
Х	2

Como a quantidade de dias diminuiu, a pessoa precisa trabalhar mais horas por dia. Como uma grandeza diminui enquanto a outra aumenta, as grandezas são inversamente proporcionais.

Horas por	dia	Dias	
5		3	
×	,	2	
	5 _	_ 2	

$$\frac{5}{x} = \frac{2}{3}$$

$$2x = 15$$

$$x = 7.5 h = 7h 30min$$

Gabarito: B

(VUNESP 2018/Pref. de Suzano)

Para imprimir um lote de panfletos, uma gráfica utiliza apenas uma máquina, trabalhando 5 horas por dia durante 3 dias. O número de horas diárias que essa máquina teria que trabalhar para imprimir esse mesmo lote em 2 dias seria

a) 8,0.

- b) 7,5.
- c) 7,0.
- d) 6,5.
- e) 6,0.

Se a máquina operar 5 horas diariamente por 3 dias, então ela opera 5 x 3 = 15 horas no total.

Para operar as 15 horas em 2 dias, a máquina precisa ser trabalhar 15/2 = 7.5 horas por dia.

Gabarito: B

(VUNESP 2017/TJ-SP)

Em determinada região, para cada 90 pessoas que contraíram uma doença e sobreviveram, 8 contraíram a mesma doença e morreram em decorrência dela. Se considerarmos 4 mil mortes decorridas por aquela doença, então é verdade que o número total de pessoas que a contraíram seria de

- a) 45 000.
- b) 46 000.
- c) 47 000.
- d) 48 000.
- e) 49 000.

Resolução

Vamos montar a tabelinha.

Sobreviventes	Mortes
90	8
Х	4.000

$$\frac{90}{x} = \frac{8}{4.000}$$

$$\frac{90}{x} = \frac{1}{500}$$

$$x = 90 \times 500$$

$$x = 45.000$$

Assim, o total de pessoas que contraiu a doença é 45.000 + 4.000 = 49.000 (sobreviventes + mortos).

Gabarito: E

(VUNESP 2018/UNESP)

Com 48 kg de comida estocada, 15 pessoas podem permanecer isoladas durante 28 dias. Considerando que haja proporcionalidade de consumo, com 60 kg de comida estocada, 35 pessoas podem permanecer isoladas durante um número de dias igual a

- a) 35.
- b) 32.
- c) 21.
- d) 15.
- e) 12.

Resolução

Vamos montar a tabela com as informações.

kg	Pessoas	Dias
48	15	28
60	35	X

Vamos simplificar as colunas. A primeira coluna pode ser simplificada por 12 e a segunda coluna por 5.

kg	Pessoas	Dias
4	3	28
5	7	X

A quantidade de comida aumentou. Portanto, o provimento durará mais dias. Como as duas grandezas aumentaram, elas são diretamente proporcionais.

A quantidade de pessoas aumentou. Assim, o provimento durará menos dias. Como uma grandeza aumentou e a outra diminuiu, elas são inversamente proporcionais.

kg	Pessoas	Dias
4	3	28
5	7	x

Vamos armar a proporção.

$$\frac{28}{x} = \frac{4}{5} \times \frac{7}{3}$$

$$\frac{28}{x} = \frac{28}{15}$$

$$x = 15$$

Gabarito: D

(VUNESP 2017/CRBio-01)

Uma plantação requer pulverizações semanais de certo defensivo agrícola. Se uma tonelada desse defensivo pulveriza 2 alqueires durante 4 semanas, então o número de toneladas necessárias para pulverizar 3 alqueires durante 10 semanas será igual a

- a) 3,75.
- b) 3,5.
- c) 3,25.
- d) 3.
- e) 2,75.

Resolução

Vamos montar a tabela com as informações.

Toneladas	Alqueires	Semanas
1	2	4
Х	3	10

Aumentando a área (alqueires), aumentará a quantidade de defensivo. As grandezas são diretamente proporcionais.

Aumentando o tempo, aumentará também a quantidade de defensivo. As grandezas são diretamente proporcionais.

Toneladas	Alqueires	Semanas
1	2	4
x	3	10

Vamos armar a proporção.

$$\frac{1}{x} = \frac{2}{3} \times \frac{4}{10}$$

$$\frac{1}{x} = \frac{8}{30}$$

$$8x = 30$$

$$x = 3,75$$

Gabarito: A

(VUNESP 2017/CM de Cotia)

Para imprimir 200 apostilas com 27 páginas cada uma, 5 impressoras levam 54 minutos. Estas impressoras imprimem um mesmo número de páginas por minuto e têm sistema automático de alimentação de folhas, ou seja, não precisam parar para o reabastecimento de folhas.

Para a impressão de 1 040 apostilas com 35 páginas impressas cada uma, em 52 minutos, será necessário um número dessas impressoras igual a

- **a)** 30.
- **b)** 35.
- **c)** 40.
- **d)** 45.
- **e)** 50.

Resolução

Na primeira situação, serão impressas 200 x 27 = 5.400 páginas em 54 minutos por 5 impressoras.

Na segunda situação, serão impressas $1.040 \times 35 = 36.400$ páginas em 52 minutos. Queremos calcular o número de impressoras.

Páginas	Minutos	Impressoras
5.400	54	5
36.400	52	X

Vamos simplificar a primeira coluna por 200 e a segunda por 2.

Páginas	Minutos	Impressoras
27	27	5
182	26	x

Aumentando o número de páginas, precisamos de mais impressoras (para imprimir no mesmo tempo). Assim, as grandezas são diretamente proporcionais.

Diminuindo o tempo, precisamos de mais impressoras (para produzir a mesma quantidade de páginas). Portanto, as grandezas são inversamente proporcionais.

Páginas	Minutos	Impressoras
27	27	5
182	26	x

Vamos armar a proporção.

$$\frac{5}{x} = \frac{27}{182} \times \frac{26}{27}$$

$$\frac{5}{x} = \frac{26}{182}$$

$$\frac{5}{x} = \frac{1}{7}$$

$$x = 35$$

Gabarito: B

Para imprimir 300 apostilas destinadas a um curso, uma máquina de fotocópias precisa trabalhar 5 horas por dia durante 4 dias. Por motivos administrativos, será necessário imprimir 360 apostilas em apenas 3 dias. O número de horas diárias que essa máquina terá que trabalhar para realizar a tarefa é

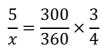
- a) 6.
- **b)** 7.
- c) 8.
- **d)** 9.
- e) 10.

Resolução

Vamos raciocinar e fazer sem tabela primeiro.

Precisamos de 5 x 4 = 20 horas = 1.200 minutos para imprimir 300 apostilas. Assim, gastamos 1.200/300 = 4 minutos por apostila.

Para imprimir 360 apostilas, precisamos de 4 x 360 = 1.440 minutos = 24 horas. Como esse trabalho será feito em 3 dias, precisamos de 24/3 = 8 horas por dia.


Vamos agora fazer com a tabela.

Apostilas	Dias	Horas por dia
300	4	5
360	3	x

O número de apostilas aumentou. Portanto, a máquina deverá trabalhar mais horas por dia. Como as duas grandezas aumentaram, elas são diretamente proporcionais.

O prazo em dias diminuiu. Portanto, a máquina deverá trabalhar mais horas por dia. Como uma grandeza diminuiu enquanto a outra aumentou, elas são inversamente proporcionais.

Apostilas	Dias	Horas poi	r dia
300	4	5	
360	3	x	,

Observe que 300/4 = 75 e 360/3 = 120.

$$\frac{5}{x} = \frac{75}{120}$$

$$75x = 600$$

$$x = 8$$

Gabarito: C

(VUNESP 2017/MP-SP)

Para organizar as cadeiras em um auditório, 6 funcionários, todos com a mesma capacidade de produção, trabalharam por 3 horas. Para fazer o mesmo trabalho, 20 funcionários, todos com o mesmo rendimento dos iniciais, deveriam trabalhar um total de tempo, em minutos, igual a

- a) 54.
- b) 48.
- c) 52.
- d) 46.
- e) 50.

Resolução

Os seis funcionários trabalharam por 3 horas = $3 \times 60 \text{ min} = 180 \text{ minutos}$.

O mesmo serviço será realizado por 20 funcionários.

A quantidade de funcionários aumentou. Portanto, eles farão o mesmo serviço em menos tempo. As grandezas são inversamente proporcionais.

Funcionários	Minutos
6	180
20	х

$$\frac{180}{x} = \frac{20}{6}$$

$$20x = 180 \times 6$$

$$x = 54 min$$

Gabarito: A

(VUNESP 2016/CM de Guaratinguetá)

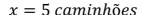
Para transportar determinada quantidade de areia, um depósito utiliza 3 caminhões, todos com a mesma capacidade, que demoram 10 dias para realizar o serviço. Para que essa mesma quantidade de areia seja transportada em 6 dias, o número de caminhões a mais, com a mesma capacidade dos anteriores, que precisarão ser utilizados é

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

Resolução

Sabemos que 3 caminhões levam 10 dias para realizar um serviço.

Queremos saber quantos caminhões são necessários para realizar o serviço em 6 dias.


Como a quantidade de dias diminuiu, precisaremos de mais caminhões para realizar o serviço. As grandezas são inversamente proporcionais.

Dias	Caminhões
10	3
6	х

Vamos armar a proporção.

$$\frac{3}{x} = \frac{6}{10}$$

$$6x = 30$$

Como havia 3 caminhões inicialmente, precisaremos de 2 caminhões a mais.

Gabarito: B

(VUNESP 2016/CM de Pradópolis)

Um grupo de estudantes gastou 18 dias, trabalhando 4 horas por dia, para escrever 120 páginas do TCC (Trabalho de Conclusão de Curso). O professor orientador, no entanto, considerou que o número de páginas era insuficiente e solicitou que esse mesmo grupo produzisse mais 160 páginas. O grupo atendeu à solicitação do professor, reuniu-se e passou a escrever as páginas complementares solicitadas, trabalhando 6 horas por dia. Para fazer o TCC completo foi preciso um total de

- a) 8 dias.
- b) 12 dias.
- c) 16 dias.
- d) 20 dias.
- e) 34 dias.

Resolução

Sabemos que os estudantes levaram $18 \times 4 = 72$ horas $= 72 \times 60$ minutos = 4.320 minutos para escrever 120 páginas. Portanto, eles levaram 4.320/120 = 36 minutos para escrever cada página.

Como eles vão escrever 160 páginas, então levarão 160 x 36 = 5.760 minutos = 96 horas. Como eles vão trabalhar 6 horas por dia, então levarão 96/6 = 16 dias.

O total de dias para escrever todo o TCC foi 18 + 16 = 34 dias.

Vamos agora fazer com a tabelinha.

Páginas	Horas por dia	Dias
120	4	18
160	6	x

A primeira coluna pode ser simplificada por 40 e a segunda coluna pode ser simplificada por 2.

Páginas	Horas por dia	Dias
3	2	18
4	3	х

O número de páginas aumentou. Portanto, os alunos precisarão de mais dias. Como as duas grandezas aumentaram, elas são diretamente proporcionais.

A quantidade de horas trabalhadas por dia aumentou. Logo, eles precisarão de menos dias para concluir o serviço. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

Páginas		Horas por	dia	Dias	
3		2		18	
4	,	3		x	ļ

$$\frac{18}{x} = \frac{3}{4} \times \frac{3}{2}$$

$$\frac{18}{x} = \frac{9}{8}$$

$$9x = 18 \times 8$$

$$x = 16$$

O total de dias para escrever todo o TCC foi 18 + 16 = 34 dias.

Gabarito: E

(VUNESP 2016/CM de Pradópolis)

Uma torneira, despejando 3,5 litros de água por minuto, enche uma caixa em 2 horas. Uma outra torneira que despeja 2 litros de água por minuto encherá uma caixa de mesma capacidade em

- a) 1h 50min.
- b) 2h 35min.
- c) 2h 50min.
- d) 3h 50min.

A primeira torneira enche a caixa em 2 horas = 120 minutos. Como ela despeja 3,5 litros por minuto, então o volume da caixa é de 120 x 3,5 = 420 litros.

A outra torneira despeja 2 litros por minuto. Para encher a caixa de 420 litros, levará 420/2 = 210 minutos.

$$210 \ min = 3h30min$$

Vamos agora fazer com a tabelinha.

Minutos	Litros por minuto
120	3,5
x	2

Como a segunda torneira despeja menos litros por minuto, ela levará mais minutos para encher a mesma caixa. Como uma grandeza diminui enquanto a outra aumenta, elas são inversamente proporcionais.

$$\frac{120}{x} = \frac{2}{3.5}$$

$$2x = 120 \times 3.5$$

$$x = 210 min = 3h30min$$

Gabarito: E

(VUNESP 2016/Pref. de Itápolis)

Trabalhando durante 8 horas diárias, 8 máquinas iguais produzem 2 400 unidades de certa peça por dia. Se a jornada de trabalho diária for aumentada para 10 horas, o número de máquinas necessárias para produzir 4 500 unidades dessa peça por dia será igual a

- a) 9.
- b) 10.
- c) 11.
- d) 12.
- e) 14.

Vamos montar a tabela.

Horas por dia	Máquinas	Peças
8	8	2.400
10	x	4.500

Vamos simplificar a primeira coluna por 2 e a última coluna por 300.

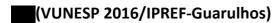
Horas por dia	Máquinas	Peças
4	8	8
5	x	15

As máquinas vão trabalhar mais horas por dia. Assim, precisamos de menos máquinas trabalhando. Como uma grandeza aumenta enquanto a outra diminui, elas são inversamente proporcionais.

O número de peças produzidas aumentou. Assim, precisamos de mais máquinas trabalhando. Como as duas grandezas aumentam, então elas são diretamente proporcionais.

Horas por dia	Máquinas	Peças
4	8	8
5	x	15

Vamos armar a proporção.


$$\frac{8}{x} = \frac{5}{4} \times \frac{8}{15}$$

$$\frac{8}{x} = \frac{2}{3}$$

$$2x = 24$$

$$x = 12$$

Gabarito: D

Determinada máquina imprime 60 livretos por hora e leva 5 horas e 40 minutos para imprimir um lote desses livretos. Após reparos nessa máquina, ela passou a imprimir 80 livretos por hora então, para imprimir um novo lote de livretos igual ao anterior, o tempo que ela irá gastar será de

- a) 4 horas e 15 minutos.
- b) 4 horas e 35 minutos.
- c) 4 horas e 50 minutos.
- d) 5 horas e 05 minutos.
- e) 5 horas e 20 minutos.

Resolução

A primeira máquina funciona por

$$5h\ 40min = (5 \times 60 + 40)min = 340\ min$$

Vamos montar a tabela.

Livretos por hora		Minutos	
60		340	
80		х	

Como a máquina está produzindo mais livretos por hora, então ela irá gastar menos tempo. Como uma grandeza aumentou enquanto a outra diminuiu, elas são inversamente proporcionais.

$$\frac{340}{x} = \frac{80}{60}$$

$$\frac{340}{x} = \frac{4}{3}$$

$$4x = 3 \times 340$$

$$x = 255 minutos = 4h 15 min$$

Gabarito: A

CONSIDERAÇÕES FINAIS

Ficamos por aqui, queridos alunos. Espero que tenham gostado da aula.

Vamos juntos nesta sua caminhada. Lembre-se que vocês podem fazer perguntas e sugestões no nosso fórum de dúvidas.

Você também pode nos encontrar no instagram @profguilhermeneves e @profbrunnolima ou entrar em contato diretamente comigo pelo meu email <u>profguilhermeneves@gmail.com</u>.

Um forte abraço e até a próxima aula!!!

Guilherme Neves

ESSA LEI TODO MUNDO CON-IECE: PIRATARIA E CRIME.

Mas é sempre bom revisar o porquê e como você pode ser prejudicado com essa prática.

Professor investe seu tempo para elaborar os cursos e o site os coloca à venda.

Pirata divulga ilicitamente (grupos de rateio), utilizando-se do anonimato, nomes falsos ou laranjas (geralmente o pirata se anuncia como formador de "grupos solidários" de rateio que não visam lucro).

Pirata cria alunos fake praticando falsidade ideológica, comprando cursos do site em nome de pessoas aleatórias (usando nome, CPF, endereço e telefone de terceiros sem autorização).

Pirata compra, muitas vezes, clonando cartões de crédito (por vezes o sistema anti-fraude não consegue identificar o golpe a tempo).

Pirata fere os Termos de Uso, adultera as aulas e retira a identificação dos arquivos PDF (justamente porque a atividade é ilegal e ele não quer que seus fakes sejam identificados).

Pirata revende as aulas protegidas por direitos autorais, praticando concorrência desleal e em flagrante desrespeito à Lei de Direitos Autorais (Lei 9.610/98).

Concurseiro(a) desinformado participa de rateio, achando que nada disso está acontecendo e esperando se tornar servidor público para exigir o cumprimento das leis.

O professor que elaborou o curso não ganha nada, o site não recebe nada, e a pessoa que praticou todos os ilícitos anteriores (pirata) fica com o lucro.